• 제목/요약/키워드: Shape Updating Case

검색결과 6건 처리시간 0.017초

수치지도 건물데이터의 매칭 기반 갱신 및 이력 데이터 생성 (Updating Building Data in Digital Topographic Map Based on Matching and Generation of Update History Record)

  • 박슬아;유기윤;박우진
    • 한국측량학회지
    • /
    • 제32권4_1호
    • /
    • pp.311-318
    • /
    • 2014
  • 건물 데이터는 지도 데이터베이스에서 차지하는 비중이 높고 객체 수도 많을 뿐만 아니라 형상정보 및 속성정보가 빠르게 변화하기 때문에, 최신 정보에 근거한 효율적인 갱신 작업은 필수적이다. 본 연구에서는 갱신 참조 건물데이터와 갱신 대상 건물 데이터의 중첩분석을 통해 갱신이 필요한 객체만을 탐색하여 갱신을 수행하고자 한다. 즉, 건물의 중첩 면적비를 이용하여 매칭 후보쌍을 탐색한 후, 속성정보 비교를 통해 갱신 케이스 분류 조건식을 정의하였으며, 이때 도형정보 갱신 케이스는 총 8가지, 속성정보 갱신 케이스는 총 4가지로 각각 분류하였다. 또한 갱신정보에 대한 갱신 이력 데이터가 자동으로 생성되도록 하여 두 가지 종류의 갱신 케이스 정보를 저장하도록 구성하였다. 갱신 대상 데이터는 수치지도 1:5,000 건물외곽선 레이어로 하였고, 갱신 참조 데이터는 도로명주소전자지도건물 레이어로 하였으며, 서울시 관악구 지역을 대상지역으로 선정하였다. 본 연구의 매칭기반 갱신기법을 적용한 결과, 전체 건물데이터 중, 82.1%의 건물이 도형정보를 수정하였고, 34.5% 건물이 속성정보를 수정하였다.

Application of shape memory alloy prestressing devices on an ancient aqueduct

  • Chrysostomou, Christis Z.;Stassis, Andreas;Demetriourder, Themos;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.261-278
    • /
    • 2008
  • The results of the application of shape memory alloy (SMA) prestressing devices on an aqueduct are presented in this paper. The aqueduct was built in 1747 to provide water to the city of Larnaca and to its port. Because of its importance to the cultural heritage of Cyprus, the aqueduct has been selected as one of the case-study monuments in the project Wide-Range Non-Intrusive devices toward Conservation of Historical Monuments in the Mediterranean Area (WIND-CHIME). The Department of Antiquities of Cyprus, acting in a pioneering way, have given their permission to apply the devices in order to investigate their effectiveness in providing protection to the monument against probable catastrophic effects of earthquake excitation. The dynamic characteristics of the structure were determined in two separate occasions and computational models were developed that matched very closely the dynamic characteristics of the structure. In this paper the experimental setup and the measured changes in the dynamic characteristics of the monument after the application of the SMA devices are described.

실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰 (Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

Health-monitoring and system-identification of an ancient aqueduct

  • Chrysostomou, Christis Z.;Stassis, Andreas
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.183-194
    • /
    • 2008
  • An important historical monument of Cyprus is an aqueduct that was built in 1747 to provide water to the city of Larnaca and to its port. Because of its importance to the cultural heritage of Cyprus, the aqueduct has been selected as one of the case-study monuments in the project Wide-Range Non-Intrusive devices toward Conservation of Historical Monuments in the Mediterranean Area (WIND-CHIME). Detailed drawings of the aqueduct obtained from the Department of Antiquities of Cyprus have been used for the development of a computational model. The model was fine-tuned through the measurement of the dynamic characteristics of the aqueduct using forced and ambient vibrations. It should be noted that measurement of the dynamic characteristics of the structure were performed twice in a period of three years (June of 2004 and May of 2007). Significant differences were noted and they are attributed to soil structure interaction effects due to seasonal variations of the water-level in a nearby salt-lake. The system identification results for both cases are presented here. This monument was used to test the effectiveness of shape memory alloy (SMA) pre-stressed devices, which were developed during the course of the project, in protecting it without spoiling its monumental value.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.