• 제목/요약/키워드: Shape Memory Effect

검색결과 217건 처리시간 0.025초

TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과 (Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite)

  • 이진경;박영철;이규창;이상필;조윤호;이준현
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

압축 하중사이클을 이용한 양방향 형상기억효과 특성 연구 (Experimental Study on the TWSME Characteristics using Compressive Loading Cycles)

  • 유영익;김현철;이정주;이우용
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.101-107
    • /
    • 2009
  • Actuators using shape memory alloys use the one-way shape recovery stress. But when external load is applied the accumulated plastic strain induced by repeated deformation is the factor of generation of uncorrect recovery stress and unreliability. To solve this problem, two-way shape memory effect (TWSME) is considered. TWSME induced by plastic deformation have advantages including simple heating cycle without external force and enough recovery force for using actuators. but there is no research on cylinder-type or tube-type shape memory alloy actuators using two-way shape memory effect until now. Therefore in this study, characteristics of two-way shape memory effect is verified through the compression experiments using cylinder-type and tube-type specimens.

Development and Application of Porous Superelastic TiNi Materials for Medical Implants

  • Gjunter, V.E.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1998년도 추계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1998
  • Research activities of Russian Medical Engineering Center and Institute of Medical Materials of Shape Memory Alloys and Implants are presented as follows: ${\bullet}$ The direction of elaboration of porous shape memory alloys for medicine. ${\bullet}$ Medical and technical requirements and physical and mechanical criteria of porous shape memory implants elaboration. ${\bullet}$ Basic laws of heat-, stress- and strain-induced changes of mechanical properties, shape memory effect and superelasticity in porous TiNi-based alloys. ${\bullet}$ Methods of regulation of shape memory effect parameters in porous alloys and methods for controlling the regulation-induced changes of physical and mechanical properties. ${\bullet}$ Original technologies of elaboration of porous alloys In various fields of medicine. ${\bullet}$ Arrangement of serial production of shape memory porous implants and examples of their medical use.

  • PDF

유한요소해석을 이용한 형상기억합금의 열적/기계적 거동 연구 (Thermomechanical Behaviors of Shape Memory Alloy Using Finite Element Analysis)

  • 윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.833-836
    • /
    • 2001
  • The thermomechanical behaviors of the shape memory alloy were conducted through the finite element analysis of ABAQUS with UMAT user subroutine. The unified thermomechanical constitutive equation suggested by Lagoudas was adapted into the UMAT user subroutine to investigate the characteristics of the shape memory alloy. The three cases were solved to investigate the thermomechanical characteristics of the shape memory alloy. The material properties for the analysis were obtained by DSC and DMA techniques. According to the results, the thermomechanical characteristics, such as a shape memory effect and a pseudoelastic effect, could be obtained through the finite element analysis and the analysis results were revealed to agree well with the experimental results. Therefore, the finite element analysis using UMAT user subroutine is one of prominent analysis techniques to investigate the thermomechnical behaviors of the shape memory alloy quantitatively.

  • PDF

Fe-30%Mn-6% Si 합금의 형상기억효과에 미치는 Training(SIM↔γ)의 영향 (Effect of Training( SIM↔γ) on Shape Memory Effect of Fe-30%Mn-6%Si Alloy)

  • 한상호;전중환;최종술
    • 열처리공학회지
    • /
    • 제7권2호
    • /
    • pp.118-128
    • /
    • 1994
  • Five alloys were selected randomly in the composition range showing the best shape memory effect in Fe-Mn-Si system reported by Murakami. The shape memory effects of those alloys were mainly investigated through the training treatment which consisted of the repetition of 2% tensile deformation at room temperature and subsequent annealing at $600^{\circ}C$ above $A_r$ temperature. At the same deformation degress in rolling $600^{\circ}C$-annealing for 1 hr. showed the best shape memory effect, and 10%-deformation degrees represented maxima of the shpae memory effects at all annealing temperatures, $500^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$. The shape memory effects of the alloys were increased by increasing training cycle up to 5 cycles. This was because a large number of dislocations introduced by training process gave rise to increase in the austenite yield stress, and acted as nucleation sites for stress induced ${\varepsilon}$ martensite. The thermal cycling treatment, repetition of cooling in nitrogen at $-196{\circ}C$ and heating to $300^{\circ}C$ for 5 min., did not improve the shape memory effect.

  • PDF

형상기억합금 작동기를 이용한 복합재 평판의 형상변형 (Morphing of Composite Plate Using SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

형상기억합금을 이용한 초소형 액츄에이터 (Shape Memory Alloy Microactuators)

  • 김병욱;김광수;조동일
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.54-61
    • /
    • 1996
  • Because of its high energy density, the use of shape memory alloys(SMA) in designing microactuatiors is gaining much attention in recent years. Shape memory alloys can undergo a shape change at a low temperature with a small applied deformation force, and retain this deformation until they are heated, at which point they return to the original shape. This is called the shape memory effect(SME), and a plethora of alloys show this effect. Among them, TiNi-based alloys have relatively high electrical resistivity, which to develope helical-shape memory springs. These springs are used to develop fast protatonist/antagonist configuration actuators. The developed actuator has an actuation speed of 1 mm per 15 .approx. 20 ms and a minimum operating period of 2 sec.

  • PDF

Effect of plastic deformation on the martensitic transformations in TiNi alloy

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.311-319
    • /
    • 2022
  • A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.

NiTi 형상기억합금의 실험적 연구 (Experimental study of NiTi shape memory alloy)

  • 양승용;구병춘;김형진;남태현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.611-615
    • /
    • 2004
  • To obtain material properties of NiTi shape memory alloy showing pseudoelastic or shape memory effect, tensile test was conducted for various temperatures. Transformation temperature also was measured by using DSC(Differential Scanning Calorimeter), and crystallographic feature of transformation was observed by XRD(X-ray Diffraction).

  • PDF

형상기억합금 강화 복합재의 사전 변형률과 형상기억 효과에 대한 이론적 고찰 (An Analytical Study on Prestrain and Shape Memory Effect of Composite Reinforced with Shape Memory Alloy)

  • 이재곤;김진곤;김기대
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.54-60
    • /
    • 2004
  • 복합재의 사전변형률과 형상기억합금의 형상기억효과를 유발하는 형상기억합금의 상변화량과의 관계를 예측하기 위하여 Eshelby의 등가개재물법과 Mori-Tanaka의 평균장이론을 이용한 새로운 3차원 모델을 제안하였다. 복합재 모델은 가공경화 현상을 갖는 알루미늄을 모재로, 단섬유 TiNi 형상기억합금을 강화재로 사용하였다. 모델 해석에 의하면 사전 변형률이 지극히 작은 영역에서는 사전변형률이 모두 강화재의 형상기억 효과를 유발하고, 이 보다 큰 영역에서 사전 변형률은 강화재의 형상기억 효과와 모재의 소성변형에 의한 것으로 나타났다. 이러한 복합재의 강화기구는 모재의 가공경화 현상과 형상기억 효과에 의한 항복응력 증가를 분리하여 제시되어야 한다.