Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.2.311

Effect of plastic deformation on the martensitic transformations in TiNi alloy  

Belyaev, Fedor S. (Laboratory of Mathematical Methods in Mechanics of Materials, Institute for Problems in Mechanical Engineering of the RAS)
Evard, Margarita E. (Saint Petersburg State University)
Volkov, Aleksandr E. (Saint Petersburg State University)
Publication Information
Smart Structures and Systems / v.29, no.2, 2022 , pp. 311-319 More about this Journal
Abstract
A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.
Keywords
martensitic transformations; microstructural modelling; plastic deformation; shape memory alloys; TiNi; two-way shape memory;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Zaki, W. and Moumni, Z. (2007), "A three-dimensional model of the thermomechanical behavior of shape memory alloys", J. Mech. Phys. Solids., 55, 2455-2490. https://doi.org/10.1016/j.jmps.2007.03.012   DOI
2 Yu, C., Kang, G. and Kan, Q. (2018b), "A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy", Int. J. Plast., 105 99-127. https://doi.org/10.1016/j.ijplas.2018.02.005   DOI
3 Evard, M.E. and Volkov, A.E. (1999), "Modeling of martensite accommodation effect on mechanical behavior of shape memory alloys", J. Eng. Mater. Technol., 121(1), 102-104. https://doi.org/10.1115/1.2815989   DOI
4 Humbeeck, J.V. (1999), "Non-medical applications of shape memory alloys", Mater. Sci. Eng. A, 273, 134-148. https://doi.org/10.1016/S0921-5093(99)00293-2   DOI
5 Sun, Q.-P. and Lexcellent, C. (1996), "On the unified micromechanics constitutive description of one-way and two-way shape memory effects", J. Phys. IV, 06(C1), 367-375. https://doi.org/10.1051/jp4:1996135   DOI
6 Panico, M. and Brinson, L.C. (2007), "A three-dimensional phenomenological model for martensite reorientation in shape memory alloys", J. Mech. Phys. Solids, 55, 2491-2511. https://doi.org/10.1016/j.jmps.2007.03.010   DOI
7 Wang, J., Moumni, Z. and Zhang W. (2017), "A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys", Int. J. Plast., 97, 194-221. https://doi.org/10.1016/j.ijplas.2017.06.003   DOI
8 Niclaeys, C., Ben Zineb, T., Arbab-Chirani, S. and Patoor, E. (2002), "Determination of the interaction energy in the martensitic state", Int. J. Plasticity, 18(11), 1619-1647. https://doi.org/10.1016/S0749-6419(02)00032-3   DOI
9 Patoor, E., Eberhardt, A. and Berveiller, M. (1996), "Micromechanical modelling of superelasticity in shape memory alloys", J. Phys. IV, 06(C1), 277-292. https://doi.org/10.1051/jp4:1996127   DOI
10 Patoor, E., Lagoudas, D.C., Entchev, P.B., Brinson, L.C. and Gao, X. (2006), "Shape memory alloys, Part I: general properties and modeling of single crystals", Mech. Mater., 38, 391-429. https://doi.org/10.1016/j.mechmat.2005.05.027   DOI
11 Surikova, N.S. and Chumlyakov, Y.I. (2000), "Mechanisms of plastic deformation of the titanium nickelide single crystals", Phys. Met. Metallogr., 89(2), 98-107.
12 Yu, C., Kang, G., Song, D. and Kan, Q. (2012), "Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy", Computat. Mater. Sci., 56, 1-5. https://doi.org/10.1016/j.commatsci.2011.12.032   DOI
13 Volkov, A.E., Emelyanova, E.V., Evard, M.E. and Volkova, N.A. (2013), "An explanation of phase deformation tension-compression asymmetry of TiNi by means of microstructural modeling", J. Alloys Compounds, 577(S1), S127-S130. https://doi.org/10.1016/j.jallcom.2012.05.131   DOI
14 Thamburaja, P. (2005), "Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys", J. Mech. Phys. Solids., 53, 825-856. https://doi.org/10.1016/j.jmps.2004.11.004   DOI
15 Volkov, A.E. and Casciati, F. (2001), "Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals", In: Shape Memory Alloys. Advances in Modelling and Applications, (Auricchio, F., Faravelli, L., Magonette, G., Torra, V., Eds.), CIMNE, Barcelona, Spain, pp. 88-104.
16 Volkov, A.E., Evard, M.E., Kurzeneva, L.N., Likhachev, V.A., Sakharov, V.Y. and Ushakov, V.V. (1996), "Mathematical modeling of martensitic inelasticity and shape memory effects", J. Tech. Phys., 66(11), 3-34. [In Russian]
17 Wang, X.M., Xu, B.X. and Yue, Z.F. (2008), "Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys", Int. J. Plast., 24, 1307-1332. https://doi.org/10.1016/j.ijplas.2007.09.006   DOI
18 Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plast., 26, 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003   DOI
19 Auricchio, F., Reali, A. and Stefanelli, U. (2007), "A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity", Int. J. Plast., 23, 207-226. https://doi.org/10.1016/j.ijplas.2006.02.012   DOI
20 Volkov, A.E., Belyaev, F.S., Evard, M.E. and Volkova, N.A. (2015), "Model of the evolution of deformation defects and irreversible strain at thermal cycling of stressed TiNi alloy specimen", Proceedings of the 10th European Symposium on Martensitic Transformations (MATEC Web of Conferences), Volume 33, Article No. 03013. https://doi.org/10.1051/matecconf/20153303013   DOI
21 Yu, C., Kang, G., Kan, Q. and Song, D. (2013), "A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys", Int. J. Plast., 44, 161-191. https://doi.org/10.1016/j.ijplas.2013.01.001   DOI
22 Beiraghi, H. (2019), "Earthquake effect on the concrete walls with shape memory alloy reinforcement", Smart Struct. Syst., Int. J., 24(4), 491-506. https://doi.org/10.12989/sss.2019.24.4.491   DOI
23 Belyaev, F.S., Evard, M.E., Volkov, A.E. and Volkova, N.A. (2015), "A microstructural model of SMA with microplastic deformation and defects accumulation: application to thermocyclic loading", Mater. Today: Proceedings, 2(suppl. 3), S583-S587. https://doi.org/10.1016/j.matpr.2015.07.352   DOI
24 Chatziathanasiou, D., Chemisky, Y., Chatzigeorgiou, G. and Meraghni, F. (2016), "Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading", Int. J. Plast., 82, 192-224. https://doi.org/10.1016/j.ijplas.2016.03.005   DOI
25 Belyaev, F.S., Volkov, A.E. and Evard, M.E. (2018), "Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading", AIP Conference Proceedings, 1959, 070003. https://doi.org/10.1063/1.5034678   DOI
26 Beliaev, F.S., Evard, M.E., Ostropiko, E.S., Razov, A.I. and Volkov, A.E. (2019), "Aging Effect on the One-Way and Two-Way Shape Memory in TiNi-Based Alloys", Shape Memory and Superelasticity, 5(3), 218-229. https://doi.org/10.1007/s40830-019-00226-5   DOI
27 Bouvet, C., Calloch, S. and Lexcellent, C. (2004), "A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings", Eur. J. Mech. A-Solid, 23, 37-61. https://doi.org/10.1016/j.euromechsol.2003.09.005   DOI
28 Peng, X., Pi, W. and Fan, J. (2008), "A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs", Int. J. Plast., 24, 966-990. https://doi.org/10.1016/j.ijplas.2007.08.003   DOI
29 Chemisky, Y., Duval, A., Patoor, E. and Ben Zineb, T. (2011), "Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation", Mech. Mater., 43, 361-376. https://doi.org/10.1016/j.mechmat.2011.04.003   DOI
30 Chowdhury, P. and Sehitoglu, H. (2017), "A revisit to atomistic rationale for slip in shape memory alloys", Progress in Mater. Sci., 85, 1-42. https://doi.org/10.1016/j.pmatsci.2016.10.002   DOI
31 Long, X., Peng, X., Fu, T., Tang, S. and Hu, N. (2017), "A micro-macro description for pseudoelasticity of NiTi SMAs subjected to nonproportional deformations", Int. J. Plast., 90, 44-65. https://doi.org/10.1016/j.ijplas.2016.12.003   DOI
32 Ilyushin, A.A. (1990), Continuum Mechanics, Moscow State University, Moscow, Russia. [In Russian]
33 Lagoudas, D.C. and Entchev, P.B. (2004), "Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs", Mech. Mater., 36, 865-892. https://doi.org/10.1016/j.mechmat.2003.08.006   DOI
34 Likhachev, V.A. (1995), "Structure-analytical theory of martensitic unelasticity", J. Phys. IV, 05(C8), 137-142. https://doi.org/10.1051/jp4:1995816   DOI
35 Manchiraju, S. and Anderson, P.M. (2010), "Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model", Int. J. Plasticity, 26(10), 1508-1526. https://doi.org/10.1016/j.ijplas.2010.01.009   DOI
36 Evard, M.E., Volkov, A.E. and Bobeleva, O.V. (2006), "An approach for modelling fracture of shape memory alloy parts", Smart Struct. Syst., Int. J., 2(4), 357-363. https://doi.org/10.12989/sss.2006.2.4.357   DOI
37 Chrysostomou, C.Z., Dernetriou, T. and Stassis, A. (2008), "Health-monitoring and system-identification of an ancient aqueduct", Smart Struct. Syst., Int. J., 4(2), 183-194. https://doi.org/10.12989/sss.2008.4.2.183   DOI
38 El-Attar, A., Saleh, A., El Habbali, I., Zaghw, A.H. and Osman, A. (2008), "The use of SMA wire dampers to enhance the seismic performance of two historical Islamic minarets", Smart Struct. Syst., Int. J., 4(2), 221-232. https://doi.org/10.12989/sss.2008.4.2.221   DOI
39 El-Borgi, S., Neifar, M., Jabeur, M.B., Cherif, D. and Smaoui, H. (2008), "Use of copper shape memory alloys in retrofitting historical monuments", Smart Struct. Syst., Int. J., 4(2), 247-259. https://doi.org/10.12989/sss.2008.4.2.247   DOI
40 Gao, X., Huang, M. and Brinson, L.C. (2000), "A multivariant model for SMAs Part 1. Crystallographic issues for single crystal model", Int. J. Plasticity, 16(10-11), 1345-1369. https://doi.org/10.1016/S0749-6419(00)00013-9   DOI
41 Yu, C., Kang, G. and Kan, Q. (2018a), "An equivalent local constitutive model for grain size dependent deformation of NiTi polycrystalline shape memory alloys", Int. J. Mech. Sci., 138-139, 34-41. https://doi.org/10.1016/j.ijmecsci.2018.02.001   DOI
42 Narjabadifam, P., Noori, M., Cardone, D., Eradat, R. and Kiani, M. (2020), "Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials", Smart Struct. Syst., Int. J., 26(1), 89-102. https://doi.org/10.12989/sss.2020.26.1.089   DOI
43 Morgan, N.B. (2004), "Medical shape memory alloy applications-the market and its products", Mater. Sci. Eng. A, 378, 16-23. https://doi.org/10.1016/j.msea.2003.10.326   DOI
44 Hartl, D.J. and Lagoudas, D.C. (2007), "Aerospace applications of shape memory alloys", J. Aerospace Eng., 221, 535-552. https://doi.org/10.1243/09544100JAERO211   DOI
45 Huang, M., Gao, X. and Brinson, L.C. (2000), "A multivariant micromechanical model for SMAs, Part 2. Polycrystal model", Int. J. Plast., 16(10-11), 1371-1390. https://doi.org/10.1016/S0749-6419(00)00014-0   DOI
46 Yu, C., Kang, G. and Kan, Q. (2014), "Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation", Int. J. Plast., 54, 132-162. https://doi.org/10.1016/j.ijplas.2013.08.012   DOI
47 Belyaev, S.P., Resnina, N.N. and Volkov, A.E. (2006), "Influence of irreversible plastic deformation on the martensitic transformation and shape memory effect in TiNi alloy", Materials Science and Engineering: A, 438-440, 627-629. https://doi.org/10.1016/j.msea.2006.02.067   DOI
48 Yu, C., Kang, G., Song, D. and Kan, Q. (2015), "Effect of martensite reorientation and reorientation-induced plasticity on multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: New consideration in constitutive model", Int. J. Plast., 67, 69-101. https://doi.org/10.1016/j.ijplas.2014.10.001   DOI