• 제목/요약/키워드: Shape Finding Analysis

검색결과 139건 처리시간 0.024초

공기막 구조물의 형상해석 (Shape Finding Analysis of Pneumatic Structure)

  • 권택진;서삼열;이장복
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF

연성 막구조의 파라메트릭 설계 시스템 개발 (Development of a Parametric Design System for Membrane Structures)

  • 최현철;이시은;김치경
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

디스크 브레이크에서 열섬 현상이 발생되는 원인과 저더 진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조호준;조종두;김명구;맹주원;이재한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.213-218
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

  • PDF

디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조종두;김명구;조호준
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

안정성 향상을 위한 자율 주행 로봇의 실시간 접촉 지면 형상인식 (Real-time Recognition of the Terrain Configuration to Increase Driving Stability for Unmanned Robots)

  • 전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.283-291
    • /
    • 2013
  • Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계 (The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM)

  • 신동현;김영호;김형준
    • 한국디지털건축인테리어학회논문집
    • /
    • 제13권2호
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

건축 설계프로세스와 형상해석을 통한 막 구조물의 형상결정 방안에 관한 연구 (A Study on the Shape-Decision Technique of Membrane Structures According to the Design Process and Shape Analysis)

  • 박선우;김승덕;손수덕;정을석
    • 한국공간구조학회논문집
    • /
    • 제7권2호
    • /
    • pp.115-124
    • /
    • 2007
  • 막 구조물을 설계하기 위해서는 우선 초기장력 도입으로 인한 구조물의 형상을 정확히 알아야 한다. 이를 위해서 모형을 통한 모델링이나 컴퓨터를 이용한 형상해석이 요구되며, 초기장력의 도입으로 형성되는 막 구조물의 곡면은 일반적으로 등장력 곡면이다. 이와 같은 특성을 가진 막 구조물은 모형만을 대상으로 형상을 구할 때에는 정량적으로 형상의 정보를 얻기가 힘들고, 형상해석만을 수행한 경우는 예기치 않은 문제가 발생하기도 한다. 또 설계자의 의도에 따른 형상은 실질적으로 등장력 곡면에 부합되지 않는 경우가 많고, 심지어 실현 불가능한 발생한다. 따라서 설계프로세스에 따른 구조물의 형상에 부합되면서 실현가능한 형상으로의 초기형상 결정과정은 막 구조물의 설계에 있어서 무엇보다 중요한 과정이다. 본 연구에서는 건축 설계프로세스에 따른 모델링과 수치적 형상해석과의 결과에 대한 차이를 살펴보고 피드벡 과정을 통하여 막 구조물의 초기형상을 결정하는 프로세스에 대해서 연구한다.

  • PDF

2차원 배열 데이터에서 유사 구역의 효율적인 탐색 기법 (An Efficient Method for Finding Similar Regions in a 2-Dimensional Array Data)

  • 최연정;이기용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권4호
    • /
    • pp.185-192
    • /
    • 2017
  • 여러 과학 분야에서 측정 또는 시뮬레이션의 결과로 2차원 배열 데이터가 활발히 생성되고 있다. 현재 배열 데이터에 대한 다양한 질의 처리 기법들이 연구되고 있으나 2차원 배열 데이터에서 크기가 미리 알려져 있지 않은, 값이 서로 유사한 구역을 찾는 문제는 거의 다루어지지 않았다. 따라서 본 논문에서는 주어진 2차원 배열 데이터에서 사용자가 지정한 값 이상의 크기를 갖는, 원소 값들이 서로 유사한 구역을 빠르게 찾는 방법을 제안한다. 본 논문의 제안 방법은 2차원 배열의 각 원소 쌍에 대해, 해당 원소로만 이루어진 크기가 1인 구역부터 시작하여 두 구역을 동일한 모양을 유지하면서 오른쪽 및 아래쪽으로 단계적으로 확장시켜나간다. 만약 두 구역의 값의 차이가 사용자가 지정한 값 이상으로 커지면 확장을 중단한다. 따라서 제안 방법은 배열에서 유사 구역이 될 가능성이 있는 부분들만 접근하여 유사 구역을 효율적으로 찾아낼 수 있다. 본 논문에서는 성능 분석과 다양한 실험을 통해 제안 방법이 매우 효율적으로 유사 구역을 찾을 수 있음을 보인다.

Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구 (A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack)

  • 태현준;신용진;김범준;김문찬
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

반응 표면법과 유한 요소법을 이용한 편측식 선형 유도 전동기의 형상 최적 설계 (Optimum Shape Design of Single-Sided Linear Induction Motors Using Response Surface Methodology and Finite Element Method)

  • 송한상;이중호;이승철;이병화;김규섭;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1057-1058
    • /
    • 2011
  • This paper deals with finding the optimal ratio of height and length of Single-Sided Linear Induction Motors (SLIM) using Finite Element Method (FEM) for magnetic field analysis coupled with optimal design methodology. For effective analysis, FEM is conducted in time harmonic field which provides steady state performance with the fundamental components of voltage and current. The ratio of height to length providing the required output power is obtained by Response Surface Methodology (RSM) and optimal values are presented by the variation in output power. When output power is small, the ratio is high and as the power increases, the ratio shows a converged value. Considering the general application of linear motors, using a small ratio can be limiting, however, the shape ratio for maximum thrust can be identified.

  • PDF