• 제목/요약/키워드: Shape Engineering

검색결과 12,817건 처리시간 0.038초

목표 형상을 추종하는 4D 프린팅 자동 설계에 관한 연구 (A Study on the Automatic Design of 4D Printing to Follow the Target Shape)

  • 함성일;이용구
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.306-312
    • /
    • 2016
  • In general, the shape of a 3D printed object is not to be changed after the generation. Most changes, for example, contraction of a molten polymer after cooling is thought to be undesirable. 4D printing however tries to make benefit of a shape change after the part is generated. The shape change is required to be controllable in response to an external stimuli. These artifacts from 4D printing are called kinetic components which are defined as structures formed by combining inert materials and smart materials that change under certain stimuli. We propose a design software that can systematically calculate inert links with smart joints to follow the shape of the target design.

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.

동맥압 형태변화에 따른 혈압 보정에 관한 연구 (A Study on the Compensation of Blood Pressure Caused by the Change of Arterial Pressure Shape)

  • 임성수;박광리;이경중
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.177-178
    • /
    • 1998
  • This paper is a study on compensation for error in estimation of mean pressure according to the change of arterial pressure shape. Because arterial pressure shape affects the mean pressure and blood volume which are important factors for measurement of blood pressure(BP), change of arterial pressure shape cause BP measurement error. In order to solve this problem, we add the compensation function C($\alpha$), depending on arterial pressure shape, to mathematical oscillometric model. Consequently, we could accurately estimate the blood pressure by correcting of the error using compensation function.

  • PDF

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

Equilibrium shape analysis of single layer structure by measure potential function

  • Ijima, Katsushi;Xi, Wei;Goto, Shigeo
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.775-784
    • /
    • 1997
  • A unified theory is presented for the shape analysis of curved surface with a single layer structure composed by frame, membrane or shell. The shapes produced by the theory have no shear stress in elements, and the stress states in the whole shape are as uniform as possible under an ordinary load. The theory starts from defining an element potential function expressed by the measurement of the element length or the element area. Therefore, the shape analysis can produce various forms according to the definition of the potential function, and each of those form or the cable net form with the potential function of the second power of element length is simply gotten by the linear analysis. The form in tensile stress is mechanically equal to an isotropic tension form.

변형 모드를 이용한 모니터용 회로 기판의 파손 저감 설계에 관한 연구 (Failure-Proof Design of the PCB of a Monitor Using Deformed Mode Shape)

  • 박상후;이부윤
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.111-116
    • /
    • 2001
  • A practical scheme to reduce failure of the PCB(Printed Circuit Board) of a monitor is introduced using deformed mode shape under mechanical shock. When the monitor is given critical shock loads, cracks are commonly initiated at the tip of a hole on the PCB. Accordingly, a deformed mode shape of the PCB is obtained using a FEM code to define a weak point on the PCB under mechanical shock, and then the position and direction of the hole is determined to prevent the failure at the critical mode shape. Also, the stress intensity factor around the weak point on the PCB is calculated to check the possibility of fracture by normal tensile stress. In conclusion, present research is useful to assist the practical design of components-layout on the PCB.

  • PDF

Customization using Anthropometric Data Deep Learning Model-Based Beauty Service System

  • Wu, Zhenzhen;Lim, Byeongyeon;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • 제19권2호
    • /
    • pp.73-78
    • /
    • 2021
  • As interest in beauty has increased, various studies have been conducted, and related companies have considered the anthropometric data handled between humans and interfaces as an important factor. However, owing to the nature of 3D human body scanners used to extract anthropometric data, it is difficult to accurately analyze a user's body shape until a service is provided because the user only scans and extracts data. To solve this problem, the body shape of several users was analyzed, and the collected anthropometric data were obtained using a 3D human body scanner. After processing the extracted data and the anthropometric data, a custom deep learning model was designed, the designed model was learned, and the user's body shape information was predicted to provide a service suitable for the body shape. Through this approach, it is expected that the user's body shape information can be predicted using a 3D human body scanner, based upon which a beauty service can be provide.

Sharp Shape를 유지하는 trimmed NURBS 곡면의 삼각화 방법 (Trimmed NURBS surface tessellation with sharp shape constraint)

  • 조두연;김인일;이규열;김태완
    • 한국게임학회 논문지
    • /
    • 제2권1호
    • /
    • pp.62-68
    • /
    • 2002
  • 본 연구에서는 기존의 곡면 삼각화 방법들이 많은 수의 삼각형 메쉬를 사용하면서도 정확하게 표현하기가 힘들었던, 날카로운 모서리를 가지는 곡면을 처리할 수 있는 trammed NURBS곡면 삼각화 방법을 제안, 구현하였다. 기존의 매개변수영역에서의 삼각화의 문제점인 3차원공간상의 삼각형 메쉬를 계산할 때의 왜곡현상을 해결하기 위해서 곡면의 펼친영역을 근사적으로 계산하여 삼각화 하는 방법을 사용했다. 곡선, 곡면의 날카로운 점과 모서리를 자동으로 인식하기 위해서 1차미분 연속조건을 이용하였고, 이를 제약조건으로 constraint Delaunay 삼각화방법을 사용하여 곡면의 날카로운 형상(sharp shape)을 유지하면서 삼각화를 수행할 수 있었다. 제안된 삼각화 방법은 기존의 삼각화 방법에 비하여 적은수의 삼각형 메쉬로 곡면의 날카로운 모서리를 보다 정확하게 표현 할 수 있는 장점을 가지고 있어서 삼각형의 개수에 따라 가시화 성능이 큰 영향을 받는 컴퓨터게임 같은 분야에 도움을 줄 수 있으리라 예상된다.

  • PDF

압축 하중사이클을 이용한 양방향 형상기억효과 특성 연구 (Experimental Study on the TWSME Characteristics using Compressive Loading Cycles)

  • 유영익;김현철;이정주;이우용
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.101-107
    • /
    • 2009
  • Actuators using shape memory alloys use the one-way shape recovery stress. But when external load is applied the accumulated plastic strain induced by repeated deformation is the factor of generation of uncorrect recovery stress and unreliability. To solve this problem, two-way shape memory effect (TWSME) is considered. TWSME induced by plastic deformation have advantages including simple heating cycle without external force and enough recovery force for using actuators. but there is no research on cylinder-type or tube-type shape memory alloy actuators using two-way shape memory effect until now. Therefore in this study, characteristics of two-way shape memory effect is verified through the compression experiments using cylinder-type and tube-type specimens.