• Title/Summary/Keyword: Shape Engineering

Search Result 12,820, Processing Time 0.038 seconds

A Study on the Effect of Powder Forging for Cup-shaped Product

  • Park, Chul-Woo;Park, Jong-Ok;Kim, Young-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • The purpose of this paper is comparing the forging effect according to the shape of preforms of cup shaped powder forging product, and extending the application of powder forging technology to more complicated cup-shaped products like pistons. In order to achieve this, preforms are provided by compacting, sintering, and machining to 5 different shapes, then forged to the final shape of products. The workability for sintered aluminium powder material was examined and confirmed its slope was 0.5 as known. Density and strain loci of forged products are also evaluated and compared. On the basis of the results, the most effective shape of preform was proposed. The preform for the piston which is 50mm in diameter was prepared and hot forged successfully to the final product.

A Study on Facility Layout for Optimamization of Material Flow System (물류시스템 최적화를 위한 설비배치에 관한 연구)

  • Park, Se-Joon;Lee, Young-Hae;Hur, Sun;Lee, Moon-Hwan;Yu, Ji-Yong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.162-165
    • /
    • 1998
  • We consider a facility layout problem for optimized material flow system design in the automated production system design. Existing facility layout algorithm have a weak point that arranged facilities have irregular shape or don't preserve their own shape and size. The proposed algorithm give a layout which is minimize total material handling cost and maximize space utility under preserving each facilities' own shape and size.

  • PDF

A Study on 3D modeling using a 3D scanner and VisualLISP (3D scanner 와 VisualLISP을 이용한 3차원 모델링에 관한 연구)

  • 김세민;이승수;김민주;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.410-413
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in the reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program whic hcan design a 3D-shape solid model in a CAD-based program automatically.

  • PDF

Rational B-spline Approximation of Point Data For Reverse Engineering (점 데이타의 Rational B-spline 근사를 통한 역공학)

  • Lee, Hyun-Zic;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.160-168
    • /
    • 1999
  • This paper describes one method of reverse engineering that machines a free form shape without descriptive model. A portable five-axes 3D CMM was used to digitize point data from physical model. After approximation by rational B-spline curve from digitized point data of a geometric shape, a surface was constructed by the skinning method of the cross-sectional design technique. Since a surface patch was segmented by fifteen part, surface merging was also implemented to assure the surface boundary continuity. Finally, composite surface was transferred to commercial CAD/CAM system through IFES translation in order to machine the modeled geometric shape.

  • PDF

Electrospinning of Polyurethane Block Copolymers with Shape Memory Effect (형상기억효과를 가지는 전기방사된 폴리우레탄 부직포에 관한 연구)

  • Cha, Dong-Il;Kim, Hak-Yong;Jung, Yong-Chae;Cho, Jae-Whan;Chun, Byoung-Chul;Jung, Yong-Chan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.261-262
    • /
    • 2003
  • Shape memory polyurethane (PU) with soft and hard segments has been extensively researched since its discovery by Mitsubishi in 1988 [1]. Hard segments can be formed via hydrogen bonding and crystallization, function as physical crosslinks below melting point (Tm). The reversible phase transformation of the soft segment is responsible for the shape memory effect. (omitted)

  • PDF

Completeness requirements of shape functions for higher order finite elements

  • Rajendran, S.;Liew, K.M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.93-110
    • /
    • 2000
  • An alternative interpretation of the completeness requirements for the higher order elements is presented. Apart from the familiar condition, $\sum_iN_i=1$, some additional conditions to be satisfied by the shape functions of higher order elements are identified. Elements with their geometry in the natural form, i.e., without any geometrical distortion, satisfy most of these additional conditions inherently. However, the geometrically distorted elements satisfy only fewer conditions. The practical implications of the satisfaction or non-satisfaction of these additional conditions are investigated with respect to a 3-node bar element, and 8- and 9-node quadrilateral elements. The results suggest that non-satisfaction of these additional conditions results in poorer performance of the element when the element is geometrically distorted. Based on the new interpretation of completeness requirements, a 3-node element and an 8-node rectangular element that are insensitive to mid-node distortion under a quadratic displacement field have been developed.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

NUMERICAL STUDY OF A CENTRIFUGAL PUMP PERFORMANCE WITH VARIOUS VOLUTE SHAPE (볼루트의 형상 변화가 원심펌프 성능에 미치는 영향에 대한 수치해석)

  • Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.35-40
    • /
    • 2015
  • Centrifugal pumps consume considerable amounts of energy in various industrial applications. Therefore, improving the efficiency of pumps machine is a crucial challenge in industrial world. This paper presents numerical investigation of flow characteristics in volutes of centrifugal pumps in order to compare the energy consumption. A wide range of volumetric flow rate has been investigated for each case. The standard k-${\varepsilon}$ is adopted as the turbulence model. The impeller rotation is simulated employing the Multi Reference Frames(MRF) method. First, two different conventional design methods, i.e., the constant angular momentum(CAM) and the constant mean velocity (CMV) are studied and compared to a baseline volute model. The CAM volute profile is a logarithmic spiral. The CMV volute profile shape is an Archimedes spiral curve. The modified volute models show lower head value than baseline volute model, but in case of efficiency graph, CAM curve has higher values than others. Finally for this part, CAM curve is selected to be used in the simulation of different cross-section shape. Two different types of cross-section are generated. One is a simple rectangular shape, and the other one is fan shape. In terms of different cross-section shape, simple rectangular geometry generated higher head and efficiency. Overall, simulation results showed that the volute designed using constant angular momentum(CAM) method has higher characteristic performances than one by CMV volute.

Isogeometric Shape Design Sensitivity Analysis of Mindlin Plates (민들린 평판의 아이소-지오메트릭 형상 설계민감도 해석)

  • Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • In this paper, a shape design sensitivity analysis(DSA) method is presented for Mindlin plates using an isogeometric approach. The isogeometric method possesses desirable advantages; the representation of exact geometry and the higher order inter-element continuity, which lead to the fast convergence of solution as well as accurate sensitivity results. Unlike the finite element methods using linear shape functions, the isogeometric method considers the exact normal vector and curvature of the CAD geometry, taking advantages of higher order NURBS basis functions. A selective reduced integration(SRI) technique is incorporated to overcome the difficulty of 'shear locking' phenomenon. This simple technique is surprisingly helpful for the accuracy of the isogeometric shape sensitivity without complicated formulation. Through the numerical examples of plate bending problems, the accuracy of the proposed isogeometric analysis method is compared with that of finite element one. Also, the isogeometric shape sensitivity turns out to be very accurate when compared with finite difference sensitivity.

Variation of Capacity Factors by Weibull Shape Parameters (와이블 형상계수에 따른 이용률 변화)

  • Kwon, Il-Han;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.