• Title/Summary/Keyword: Shape Design

Search Result 8,063, Processing Time 0.053 seconds

Method of Shape Error Measurement for the Optimal Blank Design of Shapes with 3D Contour Lines (목표윤곽선이 3 차원 곡선인 형상의 최적블랭크 설계를 위한 형상오차 측정법)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • After a short review of the iterative optimal blank method, a new method of measuring the shape error for stamped parts with 3D contour lines, which is an essential component of the optimal blank design, is proposed. When the contour line of the target shape does not exist in a plane, but exists in 3D space, especially when the shape of the target contour line is very complicated as in the real automotive parts, then the measurement of the shape error is critical. In the current study, a method of shape error measurement based on the minimum distance is suggested as an evolution of the radius vector method. With the proposed method, the optimal blank shapes of real automotive parts were found and compared to the results of the radius vector method. From the current investigation the new method is found to resolve the issues with the radius vector method.

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Optimum Design of Electrical Apparatus Using Design Variable Parametrization (설계변수 매개화를 이용한 전기기기 최적설계)

  • Lee, Hyeong-Beom;Park, Il-Han;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.546-555
    • /
    • 2001
  • ln this paper, the optimum design of electrical apparatus using design variable parametrization is presented. For analysis and design, the finite element method and the design sensitivity method is used, respectively. By applying the parametrization of the design variables, the obtained designed shape is continuous and smooth. For the parametrization the Bezier spline is used. The designed shape with parametrization is characterized by the control points. By delivering control points to the commercial CAD packages or NC machines, the exact designed shape can be realized in the manufacturing the electrical apparatus. The designed results with and without parametrization are compared and the validity of the parametrization is verified.

  • PDF

The 3D Shape Optimal Design of Transformer Tank Shield by Using Parameterized Design Sensitivity Analysis

  • Yao, Ying-Ying;Ryu, Jae-Seop;Koh, Chang-Seop;Xie, Dexin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.80-83
    • /
    • 2002
  • A 3D shape optimization algorithm integrates the geometric parameterizationi 3D F.E. performance analysis, steepest descent method with design sensitivity and mesh relocation method. The design sensitivity of the surface nodal points is also systematically converted into that of the design variables for the application to parameterized optimization. The proposed algorithm is applied to the optimum design of tank shield model of transformer and the effectiveness is proved.

  • PDF

A Study on Reverse Design of Cam Mechanism using NURBS (NURBS를 이용한 캠 기구의 역설계에 관한 연구)

  • 김상진;신중호;김대원;윤호업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.920-924
    • /
    • 2002
  • This paper presents the reverse design of a cam mechanism using NURBS(Nonuniform Rational B-spline curve). Cam is very difficult to make the accurate shape on the design and the manufacture. Because the cam shape is commonly made in order to move in special functions. The reverse design can be used to check accuracy between the designed data and the manufactured data of the cam shape and also reproduce the cam without the design data. The reverse design procedures consist of motion analysis and curve fitting. The motion analysis is used the central difference method and the relative velocity method to find the displacement and velocity. The curve fitting is used NURBS to develope the whole curve. The central difference method is derived in the 3 dimensional space.

  • PDF

Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model And Genetic Algorithm (크리깅 메타모델과 유전자 알고리즘을 이용한 초고압 가스차단기의 형상 최적 설계)

  • Kwak, Chang-Seob;Kim, Hong-Kyu;Cha, Jeong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • We describe a new method for selecting design variables for shape optimization of high-voltage gas circuit breaker using a Kriging meta-model and a genetic algorithm. Firstly we sample balance design variables using the Latin Hypercube Sampling. Secondly, we build meta-model using the Kriging. Thirdly, we search the optimal design variables using a genetic algorithm. To obtain the more exact design variable, we adopt the boundary shifting method. With the proposed optimization frame, we can get the improved interruption design and reduce the design time by 80%. We applied the proposed method to the optimization of multivariate optimization problems as well as shape optimization of a high - voltage gas circuit breaker.