This study investigated the anthropometric characteristics of US women 26 to 45 years of age to classify their body shapes into different categories. Research data was obtained from 2950 women 26 to 45 years of age who participated in the SizeUSA study. A 26 to 35 years of age group and a 36 to 45 years of age group were selected from the data pool. A total of 26 measurements important for body shape classification and for apparel product development was used for the data analysis. Five factors accounted for the US women's body measurements. The body shapes of women were categorized into 4 types: Obese A-Shape, Overweight Y-Shape, Obese H-Shape, and Normal S-Shape. Normal S-Shape was the most common body shape type. More women in the 26 to 35 years of age group had Normal S-Shape type than women in the 36 to 45 years of age group. More women in the 36 to 45 years of age group had Obese A-Shape, Overweight Y-Shape, and Obese H-Shape than women in the 26 to 35 years of age group. Younger US women, 26 to 35 years of age had slimmer body sizes with more balanced body shapes; however, older US women, 36 to 45 years of age had larger body sizes with more various body shapes.
Yazdanpanah, O.;Seyedpoor, S.M.;Bengar, H. Akbarzadeh
Structural Engineering and Mechanics
/
v.53
no.4
/
pp.725-744
/
2015
In this paper, a new damage indicator based on mode shape data is introduced to identify damage in beam structures. In order to construct the indicator proposed, the mode shape, mode shape slope and mode shape curvature of a beam before and after damage are utilized. Mode shape data of the beam are first obtained here using a finite element modeling and then the slope and curvature of mode shape are evaluated via the central finite difference method. In order to assess the robustness of the proposed indicator, two test examples including a simply supported beam and a two-span beam are considered. Numerical results demonstrate that using the proposed indicator, the location of single and multiple damage cases having different characteristics can be accurately determined. Moreover, the indicator shows a better performance when compared with a well-known indicator found in the literature.
Communications for Statistical Applications and Methods
/
v.14
no.1
/
pp.23-32
/
2007
We consider penalized likelihood regression with data from the negative binomial distribution with unknown shape parameter. Smoothing parameter selection and asymptotically efficient low dimensional approximations are employed for negative binomial data along with shape parameter estimation through several different algorithms.
Journal of the Korean Society for Precision Engineering
/
v.17
no.5
/
pp.76-83
/
2000
Shape reconstruction is considered as a new technology to be useful and important in many areas such as RPD (Rapid Product Development) and reverse engineering, compared with the conventional design and manufacturing. In shape reconstruction, it becomes possible to reconstruct objects not by their measured shape data but those data extracted from the original shape. The goal of this research is to realize 3D shape construction by showing a possible way to analyze the input image data and reconstruct that original shape. The main 2 steps of the reconstructing process are getting cross-section data from image processing and linking loops between one slice and the next one. And the reconstructed object in this way is compared with the other object using a laser scanner and modelled by an commercial software.
Journal of the Korean Society of Clothing and Textiles
/
v.38
no.4
/
pp.572-583
/
2014
This study analyzes the foot shape of female high school students using 3D foot scan data based on a comparison with adult women (20s'-30s'). Data were collected from the foot anthropometry of 199 female high school students in Gwangju and Jeollanam-do. The right foot was measured indirectly by 3D laser scanner. There are 16 items in the foot anthropometric measurements. The $6^{th}$ Size Korea (measured by 3D scan data) is used for women's foot data. The results of the 3D measurements data investigation show that the foot length and foot width became longer and wider as the age increased. It is classified by three types after analyzing foot shape. Type 1 (28.1%) represented the shortest foot length, the narrowest foot width as well as the thick foot and long ankle shape. Type 2 (4.3%) represented the wide foot width such as the wide lateral ball width and semi-thickness shape. Type 3 (67.7%) referred to the widest foot width, flat foot and short ankle shape.
The Transactions of the Korea Information Processing Society
/
v.6
no.3
/
pp.758-765
/
1999
Shape-preserving property is the important method that controls the complex free form curve/surface. Interpolation method for the existed Shape-Preservation had problems that it has needed the minimization of a curvature-related functions for calculating single-valued data. Solving this problem, in this paper, it proposed to the algorithm of generalizing C piecewise parametric cubic that has shape-preserving property for both Single-value data and Multivalue data. When there are the arbitrary tangents and two data, including shape-preserving property, this proposed method gets piecewise parametric cubic polynomial by checking the relation between the shape-preserving property and then calculates efficiently the control points using that. Also, it controls the initial shape using curvature distribution on curve segments.
Journal of information and communication convergence engineering
/
v.19
no.2
/
pp.73-78
/
2021
As interest in beauty has increased, various studies have been conducted, and related companies have considered the anthropometric data handled between humans and interfaces as an important factor. However, owing to the nature of 3D human body scanners used to extract anthropometric data, it is difficult to accurately analyze a user's body shape until a service is provided because the user only scans and extracts data. To solve this problem, the body shape of several users was analyzed, and the collected anthropometric data were obtained using a 3D human body scanner. After processing the extracted data and the anthropometric data, a custom deep learning model was designed, the designed model was learned, and the user's body shape information was predicted to provide a service suitable for the body shape. Through this approach, it is expected that the user's body shape information can be predicted using a 3D human body scanner, based upon which a beauty service can be provide.
Journal of the Korea Fashion and Costume Design Association
/
v.21
no.4
/
pp.165-179
/
2019
This study used 3D body scan data to classify body shapes according to the torso shape of adult males aged 20-75 years. This data will be provided so that the apparel industry can make apparel products corresponding to body characteristics by age. The study used 1,796 adult males between the ages of 20 and 75 and the 3D body shape data of the '5th Research on National Standard Anthropometry'. For data analysis, the program SPSSWIN Ver. 17.0 was used to calculate the mean and frequency allowing for a factor analysis, cluster analysis, analysis of variance, and Duncan test. To classify body shape according to the torso shape of adult males, this study considered nine factors: 'horizontal size of torso,' 'vertical size of body,' 'curve of torso and waist-abdomen flatness ratio,' 'length of torso,' 'shape of neck area,' 'degree of lateral curve,' 'difference between front and back interscye length,' 'shoulder armscye shape,' and 'chest flatness ratio.' Based on the results of the factor analysis, the torso shapes of adult males were classified into five types. Type 1 is "upright body with flat, curvy shape", Type 2 is "curve sway back body type", Type 3 is "flat, abdominally obese body", Type 4 is "obese, crooked body" and Type 5 is "thick sway front body type." named.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.04a
/
pp.416-421
/
1997
This study presents a way to construct 3D shape in STL format from 2D slice data. Nowadays ahape reconstruct has been done in many ares, the application of this method is important especially in Reverse Engineering which reconstructs original shape from cross-section data. Current RP (Rapid Prototyping) is used not only for the verification of a part designed but also for the production and tooling in more effective way. In RP technology, data should be prepared in STL format. In this paper, the way to make 3D shape data in STL format form 2D slice data is described which can be used to reconstruct an original shape in RP equipment.
Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.6_2
/
pp.643-651
/
2012
Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.