• Title/Summary/Keyword: Shape Accuracy

Search Result 1,648, Processing Time 0.039 seconds

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features (형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법)

  • Yang, Dong Won
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.97-105
    • /
    • 2020
  • A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.

A Study on the Shape Analysis Method of Plane Truss Structures under the Prescribed Displacement (변위제약을 받는 평면트러스 구조물의 형태해석기법에 관한 연구)

  • 문창훈;한상을
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.217-226
    • /
    • 1998
  • The purpose of this study is to develop a technique for the shape analysis of plane truss structures under prescribed displacement modes. The shape analysis is performed based on the existence theorem of the solution and the Moore-Penrose generalized inverse matrix. In this paper, the homologous deformation of structures was proposed as prescribed displacement modes, the shape of the structure is determined from these various modes and applied loads. In general, the shape analysis is a kind of inverse problem different from stress analysis, and the governing equation becomes nonlinear. In this regard, Newton-Raphson method was used to solve the nonlinear equation. Three different shape models are investigated as numerical examples to show the accuracy and the effectiveness of the proposed method.

  • PDF

Shape Estimation for the Control of Composite Smart Sstructure Using Piezoceramics (복합재료 지능구조물의 제어를 위한 압전소자를 이용한 변형형상예측)

  • Ha, Seong-Gyu;Jo, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1133-1145
    • /
    • 1996
  • A method is proposed to predict the deformed shape of the structure subjected to the unknown external loads using the signal from the piezoceramic sensors. Such a shape estimation is based on the linear relationship between the deformation of structure and the signal from sensor, which is calculated using finite element method. The deformed shape is, then calculated using the linear matrix and the signals from the piezoceramic sensors attached to the structures. For the purpose, a structural analysis program is developed using a multi-layerd finite element of 8 nodes with 3 displacement and one voltage degrees of freedom at each node. The multiple layers with the different material properties can be layered within the element. The incompatible mode with the element is found to be crucial to catch the bending behavior accurately. The accuracy of the program is, then, verified by being compared with the experimental results performed by Crawley. The proposed shape estimation method is also verified for the different loads and sensor size. It is shown that the results of shape estimation method using the linear matrix well predicts the deflections compared with those of finite element method.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.

Development of a shape measuring system by hand-eye robot (Hand-Eye Robot에 의한 형상계측 시스템의 개발)

  • 정재문;김선일;양윤모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.586-590
    • /
    • 1990
  • In this paper we describe the shape measuring technique and system with a non-contractive sensor, composed of slit-ray projector and solid-state camera. For improving the accuracy and preventing measuring dead point, this sensor part is attached to the end of robot, and each sensing is executed after one step moving. By patching these sensing data, whole measuring data is constructed. The calibration between sensor and world coordinate is implemented through the specific calibration block by transformation matrix method. The result of experiment was satisfactory.

  • PDF

New Formulation of MNDIF Method for Eigenvalue Analysis of Plates (평판의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발)

  • Kang, Sang Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.180-185
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate natural frequencies of concave plates with arbitrary shape. Originally, the MNDIF method cannot yield accurate natural frequencies for concave plates. To overcome this weak point, a new approach of dividing a concave plate into two convex domains is proposed and the validity and accuracy is shown in a verification example.

  • PDF

Kirchhoff Plate Analysis by Using Hermite Reproducing Kernel Particle Method (HRKPM을 이용한 키르히호프 판의 해석)

  • 석병호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.12-18
    • /
    • 2002
  • For the analysis of Kirchhoff plate bending problems, a new meshless method is implemented. For the satisfaction of the C¹ continuity condition in which the first derivative is treated as another primary variable, Hermite interpolation is enforced on standard reproducing kernel particle method. In order to impose essential boundary conditions on solving C¹ continuity problems, shape function modifications are adopted. Through numerical tests, the characteristics and accuracy of the HRKPM are investigated and compared with the finite element analysis. By this implementation, it is shown that high accuracy is achieved by using HRKPM fur solving Kirchhoff plate bending problems.

  • PDF

Accuracy Enhancement in Direct & Adaptive Slicing of a Rotational Surface (회전곡면의 직접ㆍ적응 단면화에 있어서 정밀도 향상)

  • 박정환;신양호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.185-191
    • /
    • 2000
  • Direct & adaptive slicing of sculptured surfaces in RP improves, quality & accuracy of the final product, compared to the slicing with uniform layer thickness or the slicing of facets (ie, STL). Present D&A slicing procedures adaptively compute the next layer thickness based on the surface information of current sliced contour, which assumes constant normal curvature values. In some cases, however. such assumption leads to intolerable slicing result which cannot correctly consider the entire local feature shape. We propose improved adaptive slicing algorithms which can determine near-optimal layer thickness, including illustrated examples.

  • PDF

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

Inspection for Large 2D machining product using robot vision (로봇비젼을 이용한 대형 2차원 가공물의 검사)

  • 정병묵;이성건;조지승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.177-180
    • /
    • 2002
  • Generally, it is very difficult to inspect geometric shape of large 2D objects after machining. To maintain the accuracy for inspection, a robot vision is used to divide overall shape into several enlarged images, and image processing technique is applied to acquire one minute geometric contour. The inspection is to compare the NC data with the measured contour data by the vision system, and the algorithm is to rotate to minimize the maximum deviation coinciding two geometric centers. This paper experimentally shows that the proposed inspection algorithm is very useful fur a large machined object.

  • PDF