• Title/Summary/Keyword: Shallow-water effect

Search Result 192, Processing Time 0.037 seconds

Soil Organic Matter and Nutrient Accumulation at the Abandoned Fields

  • Park, Byung Bae;Shin, Joon Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.492-500
    • /
    • 2008
  • Since vegetation significantly influences on soil carbon and nutrient storage, vegetation change has been focused on terrestrial carbon and nutrient cycling studies. In this study we investigated soil carbon and major nutrient capitals at the abandoned fields, which had different vegetation composition: a three year abandoned field ($AGR_3$), two ten years abandoned fields ($PD_{10}$ dominant with Pinus densiflora and Fraxinus rhynchophylla and $PM_{10}$ dominant with Populus maximowiczii), and an over sixty years forest ($FOR_{60}$). which were located at Hongcheon-gun, Kangwon-do, South Korea. Both main effects for organic matter (%) were significant: shallow soil > deep soil and $FOR_{60}=PM_{10}$ > $AGR_3=PD_{10}$. Nitrogen concentrations at $PM_{10}$ were the highest, while the lowest at $PD_{10}$. Available phosphorus concentrations were the highest at $PD_{10}$, which were over 10 times of site $FOR_{60}$ and $AGR_3$ at 0-10 cm soil depth. The average organic matter ($173Mg\;ha^{-1}$) and nitrogen contents ($10Mg\;ha^{-1}$) of $PM_{10}$ and $FOR_{60}$ were higher than those of $AGR_3$ and $PD_{10}$ by 57% and 42%, respectively. The available phosphorus contents above 30 cm mineral soil at $PD_{10}$ ($3.8Mg\;ha^{-1}$) and $PM_{10}$ ($1.3Mg\;ha^{-1}$) were over 120 times and 40 times more than at $FOR_{60}$. Calcium ($3.7Mg\;ha^{-1}$) and magnesium contents ($2.8Mg\;ha^{-1}$) at $FOR_{60}$ were twice or three times higher than at other sites. Organic matter amounts in 0-10 cm and 10-30 em soil had significant positive relationships with nitrogen, calcium, and magnesium contents, but not available phosphorus and potassium contents. This study could not identify the effect of chronological factor and vegetation composition on soil carbon and nutrient capital owing to diverse topography as well as limited study sites. However, this study suggests the accuracy of investigation for regional carbon and nutrient sequestration can be achieved by considering the period of abandoned time on the fields and the land use types. These results may suggest the benefits of forest restoration for soil carbon and nutrient accumulation in marginal agricultural lands in South Korea.

Community Fluctuation of the Benthic Macroinvertebrates before and after the Construction of Nakdan Weir (낙동강 본류 낙단보 설치 전후의 저서성 대형무척추동물 군집변동)

  • Lee, Mi Jin;Seo, Eul Won;Yu, Jae Jeong;Lee, Jong Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.328-336
    • /
    • 2014
  • Nakdan weir, which is located in the second weir among the 8 weirs of Nakdong River, had been constructed from Nov. 2009 to Nov. 2011. To analyze the effect of Nakdan weir construction on benthic macroinvertebrates, we studied 2 sites around Nakdan weir (upstream and downstream) from 2007 to 2014. The average numbers of species and individuals were decreased after the construction (in 2012~2014, 51 species $895inds.\;m^{-2}$) than before construction (in 2007~2009, 25 species $84inds.\;m^{-2}$), especially in upstream site of Nakdan weir. After the construction, especially in 2012, dominance indices (DI) were increased by the decline of some specific taxon population, such as Ephemeroptera and Trichoptera, etc. After construction, individual ratios of GC (Gathering Collectors) and P (Predator) of FFGs (Functional feeding groups) and BU (Burrowers) of HOGs (Habitat orientation groups) were higher than before construction. So the results of this study indicate that the changes by a weir construction, such as the decline of shallow depth area, reduced velocity of water flow and increased ratio of sand bed, etc., can affect the benthic macroinvertebrate communities variously.

Numerical Modeling of Tide Asymmetry in the Southeast Coastal Zone of Yellow Sea (서해남부해역의 조석 비대칭에 대한 수치모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.429-441
    • /
    • 2011
  • In the southeast coastal zone of Yellow Sea, the tide characteristics showing ebb-dominant tide and tidal flow were confirmed by analysis of observed tide and tidal currents. Physical factors generating asymmetric tide were reviewed. Influence of bottom shear stress, tidal flat, and nonlinear terms in shallow water equations was investigated by two-dimensional tide modeling. The model results gave good agreements with observed tides, but the amplitude of simulated $M_4$ tide was less than that of observed tide. The tidal flats existing in the study area widely have great effect on the generation of nonlinear tide. The M4 tide is mainly generated near the tidal flats. The deletion of tidal flats prevents the production of the M4 tide. We can conclude that the wide tidal flats is a primary cause of tide asymmetry in the study area.

Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin (낙동강 유역권 내 정수생태계의 동물플랑크톤 군집 동태)

  • Kim, Seong-Ki;Hong, Dong-gyun;Kang, MeeA;Lee, Kyung-Lak;Lee, Hak Young;Joo, Gea-Jae;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.410-420
    • /
    • 2015
  • In order to estimate the influence of environmental factors on zooplankton communities in lentic freshwater ecosystems, 20 reservoirs and wetlands were monitored by season in 2013. A total of 109 species of zooplankton were identified during the study period. Zooplankton assemblage showed a different distribution in its density and diversity in accordance with the seasons. In particular, the density of zooplankton (98 species and 603ind. L-1) was the most in autumn when compared to the other seasons. In order to effectively analyze zooplankton distribution that are affected by various environmental factors, a Self-Organizing Map (SOM) was used, which extracts information through competitive and adaptive properties. A total of 11 variables (8 environment factors and 3 groups of zooplankton) were patterned on to the SOM. Based on a U-matrix, four clusters were identified from the model. Among zooplankton communities, rotifer displayed a positive relationship with water temperature, and cladocerans and copepod were positively related to conductivity, chlorophyll a, and nutrient factor (i. e. TN and TP). In contrast, high dissolved oxygen appeared to have a negative effect on zooplankton distribution. Consequently, the SOM results depicted a clear pattern of zooplankton density clusters partitioned by environmental factors, which play a key role in determining the seasonal distribution of zooplankton groups in lentic freshwater ecosystem.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

The Effect of Anticyclonic Eddy on Nutrients and Chlorophyll During Spring and Summer in the Ulleung Basin, East Sea (동해 울릉분지에서 봄과 여름동안 시계방향 와류가 영양염과 엽록소에 미치는 영향)

  • Kim, Dong-Seon;Kim, Kyung-Hee;Shim, Jeong-Hee;Yoo, Sin-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2007
  • In order to find out the effects of the anticyclonic eddy on the distribution of nutrients and chlorophyll concentrations in the Ulleung Basin during spring and summer, we measured temperature, salinity, nutrients, and chlorophyll from the surface to 200 m water depth at five stations in July 2005 and April 2006. In spring, surface mixed layer was very deep inside the eddy, about 200 m, but it was relatively shallow outside the eddy, about $20{\sim}60$ m. Inside of the eddy, nutrients in the surface waters were sufficient by supply from the deep layer, whereas outside of the eddy, they were fairly depleted due to the stratification in the surface layer. In spring, chlorophyll concentrations were relatively low inside of the eddy due to the deeper surface mixed layer compared with the euphotic depth, and the depth-integrated chlorophyll concentrations outside of the eddy were twice as much as those inside of the eddy. In summer, nutrients in the surface waters were completely depleted at all stations due to the well stratification in the surface layer. The typical distribution pattern of subsurface chlorophyll maximum was observed at all stations, and the depth-integrated chlorophyll concentrations inside of the eddy were almost twice as much as those outside of the eddy. The anticyclonic eddy appearing in the Ulleung Basin every year significantly affects the phytoplankton biomass, with the opposing effects in spring and summer; in spring, the anticyclonic eddy suppresses phytoplankton growth, but in summer, it enhances the phytoplankton biomass.

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Assessment of Groundwater Contamination Using Geographic Information System (지리정보시스템을 이용한 지하수 오염 평가)

  • 전효택;안홍일
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • In this study two sites were selected to investigate groundwater contamination and spatial relationship between pollution level and its source. One is the Asan area, agricultural district where pollution sources are scattered. The other is the Gurogu area of Seoul city, industrial district where industrial complex and residential areas are located. Groundwater samples collected from these districts were analysis for chemical constituents. The attribute value files of the chemical constituents of groundwater and the spatial layers have been constructed and the pollution properties have been investigated to find out spatial relationships between the groundwater constituents and pollution sources using CIS. Relatively high contents of Si and HCO$_3$ in groundwater from the Asan area reflect the effect of water-rock interaction, whereas high contents of Cl, NO$_3$, SO$_4$and Ca in groundwater from the Gurogu area are due to the pollution of various sources. Pollution over the critical level of Korean Dinking Water Standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. There is pollution of NO$_3$, Cl, Fe, Mn, SO$_4$and Zn in groundwater from the Gurogu area, and that of NO$_3$, SO$_4$and Zn in groundwater from the Asan area. Principal pollution in both areas is NO$_3$contamination. Deep groundwater from the Asan area is not contaminated with NO$_3$except for one site and most of shallow groundwater near the potential point sources such as factory and stock farm is contaminated seriously. Groundwater from the Gurogu area has been already polluted seriously considering the fact of contamination of deep groundwater. This study reports a spatial relationship between the pollution level and pollution source using GIS.

  • PDF