Browse > Article
http://dx.doi.org/10.13047/KJEE.2015.29.3.410

Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin  

Kim, Seong-Ki (Dept. of Biological Sciences, Pusan National Univ.)
Hong, Dong-gyun (Dept. of Biological Sciences, Pusan National Univ.)
Kang, MeeA (Dept. of Environmental Engineering, Andong National Univ.)
Lee, Kyung-Lak (Nakdong River Environment Research center, National institute of Environmental Research Environmental Research)
Lee, Hak Young (Dept. of Biological Sciences, Chonnam National Univ.)
Joo, Gea-Jae (Dept. of Biological Sciences, Pusan National Univ.)
Choi, Jong-Yun (National Institute of Ecology)
Publication Information
Korean Journal of Environment and Ecology / v.29, no.3, 2015 , pp. 410-420 More about this Journal
Abstract
In order to estimate the influence of environmental factors on zooplankton communities in lentic freshwater ecosystems, 20 reservoirs and wetlands were monitored by season in 2013. A total of 109 species of zooplankton were identified during the study period. Zooplankton assemblage showed a different distribution in its density and diversity in accordance with the seasons. In particular, the density of zooplankton (98 species and 603ind. L-1) was the most in autumn when compared to the other seasons. In order to effectively analyze zooplankton distribution that are affected by various environmental factors, a Self-Organizing Map (SOM) was used, which extracts information through competitive and adaptive properties. A total of 11 variables (8 environment factors and 3 groups of zooplankton) were patterned on to the SOM. Based on a U-matrix, four clusters were identified from the model. Among zooplankton communities, rotifer displayed a positive relationship with water temperature, and cladocerans and copepod were positively related to conductivity, chlorophyll a, and nutrient factor (i. e. TN and TP). In contrast, high dissolved oxygen appeared to have a negative effect on zooplankton distribution. Consequently, the SOM results depicted a clear pattern of zooplankton density clusters partitioned by environmental factors, which play a key role in determining the seasonal distribution of zooplankton groups in lentic freshwater ecosystem.
Keywords
PHYSICO-CHEMICAL FACTORS; SELF-ORGANIZING MAP; SEASONAL DISTRIBUTION; RESERVOIRS; SHALLOW WETLANDS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Allan, J.D.(1976) Life history patterns in zooplankton. Am. Nat. 110: 165-180.   DOI
2 Berzins, B. and B. Pejler(1989) Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223-231.   DOI
3 Blanco, S., S. Romo, M.J. Villena and S. Martinez(2003) Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506: 473-480.
4 Blindow, I., A. Hargeby, B.M.A. Wagner and G. Andersson(2000) How important is crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation?. Freshwater Biol. 44: 185-197.   DOI
5 Bunn, S.E. and P.I. Boon(1993) What sources of organic carbon drive food webs in billabongs?. Oecologia 96: 85-94.   DOI
6 Burks, R.L., D.M. Lodge, E. Jeppesen and T.L. Lauridsen(2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343-365.   DOI
7 Choi, J.Y., G.H. La, S.K. Kim, K.S. Jeong and G.J. Joo(2013a) Zooplankton community distribution in aquatic plants zone: Influence of epiphytic rotifers and cladocerans in accordance with aquatic plants cover and types. Korean J. Ecol. Environ. 46: 86-93.(in Korean with English abstract)   DOI
8 Choi, J.Y., K.S. Jeong and G.J. Joo(2014b) Zooplankton community distribution in shallow reservoirs during winter: influence of environmental factors on Cyclops vicinus(Copepoda: cyclopoida). Korean J. Ecol. Environ. 37: 99-104.(in Korean with English abstract)   DOI
9 Choi, J.Y., K.S. Jeong, G.H. La, H.W. Kim, K.H. Chang and G.J. Joo (2011) Inter-annual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. J. Ecol. Field Biol. 34: 49-58.   DOI
10 Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014a) Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands(South Korea). J. Limnol. 73: 11-16.
11 Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo(2013b) Zooplankton community distribution and food web structure in small reservoirs: influence of land uses around reservoirs and littoral aquatic plant on zooplankton. Korean J. Ecol. Environ. 46: 332-342.(in Korean with English abstract)
12 Chon, T.S., Y.S. Park, K.H. Moon and E.Y. Cha(1996) Patterning communities by using an artificial neural network. Ecol. Model. 90: 69-78.   DOI
13 Dejen, E., J. Vijverberg, L.A. Nagelkerke and F.A. Sibbing(2004) Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake(L. Tana, Ethiopia). Hydrobiologia 513: 39-49.   DOI
14 Chon, T.S., Y.S. Park and E.Y Cha(2000) Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks. In: Artificial Neuronal Networks: Application to Ecology and Evolution(Lek, S. and J.F. Guegan, eds.). Springer, Berlin. pp. 99-114.
15 Choudhary, S., D.K. Singh and V. Kumar(2014) Seasonal variation of phytoplankton in response to abiotic parameters in Basman Lake, Motihari District(North Bihar) India. Environ. Ecol. 32: 134-137.
16 David, V., B. Sautour, P. Chardy and M. Leconte(2005) Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary(France). Estuar. Coast. Shelf S. 64: 171-184.   DOI
17 Devetter, M.(1998) Influence of environmental factors on the rotifer assemblage in an artificial lake. Hydrobiologia 387: 171-178.
18 Elser, J.J., K. Hayakawa and J. Urabe(2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82: 898-903.   DOI
19 Gannon, J.E. and R.S. Stemberger(1978) Zooplankton(especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Micros. Soc. 97: 16-35.   DOI
20 Garcia, H.L. and I.M. Gonzalez(2004) Self-Organizing Map and clustering for wastewater treatment monitoring. Eng. Appl. Artif. Intel. 17: 215-225.   DOI
21 Kim, H.S., B.C. Kim, E.M. Choi and S.J. Hwang(2000) Effects of cyanobacterial bloom on zooplankton community dynamics in several eutrophic lakes. Korean J. Limnol. 33: 366-373.
22 Horppila, J., P. Eloranta, A. Liljendahl-Nurminen, J. Niemisto and Z. Pekcan-Hekim(2009) Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake. Aquat. Ecol. 43: 91-103.   DOI
23 Jeong K.S., D.K. Kim, T.S. Chon and G.J. Joo(2005) Machine learning application to the Korean freshwater ecosystems. Korean J. Ecol. 28: 405-415.   DOI
24 Jeppesen, E., J.P. Jensen, M. Sondergaard and T. Lauridsen(1999) Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. In Shallow Lakes' 98, Springer Netherlands, pp. 217-231.
25 Kim, H.W., S.J. Hwang and G.J. Joo(2000) Zooplankton grazing on bacteria and phytoplankton in a regulated large river(Nakdong River, Korea). J. Plankton Res. 22: 1559-1577.   DOI
26 Kim, H.W., G.H., La, J.H. Park, H.J. Song, K.S. Hwang, B.J. Lim and H.Y. Lee(2012) Community size structure of zooplankton assemblages in 29 lentic ecosystems on the Youngsan-Seomjin River basin(2010-2011). Korean J. Environ. Biol. 30: 64-70.(in Korean with English abstract)
27 Kohonen, T., J. Hynninen, J. Kangas and J. Laaksonen(1996) Som pak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.
28 Korea Ministry of Environment(2012) Water Pollution Investigation Method. pp. 93-1082.
29 Miranda, L.E., C.S. Andrews and R. Kroger(2014) Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes. Aquat. Sci. 76: 41-50.   DOI
30 Manatunge, J., T. Asaeda and T. Priyadarshana(2000) The influence of structural complexity on fish-zooplankton interactions: a study using artificial submerged macrophytes. Environ. Biol. Fish 58: 425-438.   DOI
31 Mizuno, T. and E. Takahashi(1991) An Illustrated Guide to Freshwater Zooplankton in Japan. Tokai University Press. pp. 1-556.
32 Richardson, A.J.(2008) In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65: 279-295.   DOI
33 Sagrario, G., de los Angeles M.A.R.I.A. and E. Balseiro(2010) The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biol. 55: 2153-2166.   DOI
34 Sakamoto, M., K.H. Chang and T. Hanazato(2006) Inhibition of development of anti-predator morphology in the small cladoceran Bosmina by an insecticide: impact of an anthropogenic chemical on prey-predator interactions. Freshwater Biol. 51: 1974-1983.   DOI
35 Sakuma, M., T. Hanazato, A. Saji and R. Nakazato(2004) Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona(Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23.   DOI
36 Son, M.W. and Y.G. Jeon(2003) Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. J. Korean Assoc. Reg. Geogr. 9: 66-76.(in Korean with English abstract)
37 Varbiro, G., E. Acs, G. Borics, K. Erces, G. Feher, I. Grigorszky, T. Japport, G. Kocsis, E. Karsznai, K. Nagy, Zs. Nagy-Laszlo, Zs. Pilinszky and K.T. Kiss(2007) Use of self-organizing maps(SOM) for characterization of riverine phytoplankton associations in Hungary. Arch. Hydrobiol. 161: 388-394.
38 Sterner, R.W., D.D. Hagemeier, W.L. Smith and R.F. Smith(1993) Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr. 38: 857-871.   DOI
39 Stich, H.B. and W. Lampert(1981) Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396-398.   DOI
40 Stockwell, J.D. and W.G. Sprules(1995) Spatial and temporal patterns of zooplankton biomass in Lake Erie. ICES J. Mar. Sci. 52: 557-564.   DOI
41 Werner, E.E. and D.J. Hall(1974) Optimal foraging and the size selection of prey by the bluegill sunfish(Lepomis macrochirus). Ecology 55: 1042-1052.   DOI
42 Zaret, T.M. and J.S. Suffern(1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804-813.   DOI