• Title/Summary/Keyword: Shallow groundwater

Search Result 200, Processing Time 0.021 seconds

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

A Modification of Water Table Fluctuation Model Considering Delayed Drainage Effect of Unsaturated Zone (비포화대 지연배수 효과를 고려한 지하수위 변동모델의 개선 및 적용)

  • Kim, Seong-Han;Park, Eun-Gyu;Kim, Yong-Sung;Kim, Nam-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.17-27
    • /
    • 2011
  • Recently, a physically based model of water-table fluctuation due to precipitation is developed based on aquifer water balance model. In the model, it was assumed that the water infiltration into ground surface is advection dominant and immediately reaches to water-table. The assumption may be suited for the sites where the water-table is shallow and/or the permeability of the unsaturated zone is high. However, there are more cases where the model is not directly applicable due to thick and low permeable unsaturated zone. For the low permeability unsaturated zone, the pattern of water flux passing through unsaturated zone is diffusive as well as advective. In this study, to improve the previously developed water-table fluctuation model, we combined the delayed drainage model, which has long been used in well hydraulics, to the water-table fluctuation model. To test the validity of the development, we apply the developed model to 5 different domestic sites. The model parameters are calibrated based on the groundwater hydrograph and the precipitation time series, and the correlation analyses among the parameters are pursued. The overall analyses on the delineated model parameters indicate that the delayed drainage parameters or delay index used in the developed model are able to reveal drainage information in the unsaturated zones.

Geothermal Research and Development in Korea (한국의 지열 연구와 개발)

  • Song, Yoon-Ho;Kim, Hyoung-Chan;Lee, Sang-Kyu
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.485-494
    • /
    • 2006
  • This paper summarizes the history of geothermal research in Korea since 1920s and also describes the present status of research on heat flow, origin of thermal waters and geothermal exploitation and utilization. Geothermal research in Korea has been mainly related with hot spring investigation until 1970s. 1t was not until 1980s before heat flow study became continuous by research institute and academia and first nation-scale geothermal gradient map and heat flow map were published in 1996. Also in 1990s, geochemical isotope analysis of Korean hot spring waters and measurements of heat production rate of some granite bodies were made. Attempts to develop and utilize the deep geothermal water has been tried from early 1990s but field scale exploitations for geothermal water was activated in 2000s. Considering recent increase of demands on both deep and shallow geothermal energy utilization, outlook on future goethermal research and development is encouraging.

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

Seasonal Variation of Cr(VI)-contaminated Groundwater Quality and the Potential for Natural Attenuation (6가 크롬 오염 지하수 수질의 계절변화와 자연저감 가능성)

  • Chon, Chul-Min;Ahn, Joo-Sung;Roh, Yul;Rhee, Sung-Keun;Seo, Hyun-Hee;Kim, Gue-Young;Koh, Dong-Chan;Son, Young-Chul;Kim, Ji-Wook
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.645-655
    • /
    • 2008
  • The Cr(VI) concentrations at the shallow aquifer well (MPH-0-1) of the Moonpyung groundwater monitoring station were in the range of 0.5 to 3.1 mg/L exceeding 10 to 62 times the guideline for drinking-water quality, indicating continuous contamination. However, Cr was not detected at the deep bedrock well and the other subsidiary monitoring wells except for MPH-1 and 6. Cross-correlation analyses were conducted for rainfall and groundwater level time series, resulting in the mean time of recharge after precipitation events to be 5.6 days. For rainy season, the water level was raised and the Cr(VI) concentration was several times lower than that during dry season at well MPH-0-1 well. Correlation of the Cr(VI) concentration with the groundwater-level showed that the Cr(VI) reduction was closely related with the groundwater-level rise in the well. However, the groundwater level rise during high water season induced the lateral migration of the Cr(VI)-contaminated groundwater at well MPH-4. We enriched and isolated a chromium reducing bacteria, Enterobacter aerogenes, from the Cr(VI)-contaminated groundwater in the wells MPH-0-1 and MPH-1. The bacteria may play an important role for immobilizing Cr(VI) in the Cr(VI)-contaminated groundwater. Therefore, the migration of the contaminant (Cr(VI) must has been restricted because of the natural attenuation by microbial reduction of Cr(VI) in the groundwater. This research suggests that the bioremediation of the Cr(VI)-contaminated groundwater by the indigenous bacteria may be feasible in the Cr(VI) contaminated groundwater.

Relationship Between Standardized Precipitation Index and Groundwater Levels: A Proposal for Establishment of Drought Index Wells (표준강수지수와 지하수위의 상관성 평가 및 가뭄관측정 설치 방안 고찰)

  • Kim Gyoo-Bum;Yun Han-Heum;Kim Dae-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.31-42
    • /
    • 2006
  • Drought indices, such as PDSI (palmer Drought Severity Index), SWSI (Surface Water Supply Index) and SPI (Standardized Precipitation Index), have been developed to assess and forecast an intensity of drought. To find the applicability of groundwater level data to a drought assessment, a correlation analysis between SPI and groundwater levels was conducted for each time series at a drought season in 2001. The comparative results between SPI and groundwater levels of shallow wells of three national groundwater monitoring stations, Chungju Gageum, Yangpyung Gaegun, and Yeongju Munjeong, show that these two factors are highly correlated. In case of SPI with a duration of 1 month, cross-correlation coefficients between two factors are 0.843 at Chungju Gageum, 0.825 at Yangpyung Gaegun, and 0.737 at Yeongju Munjeong. The time lag between peak values of two factors is nearly zero in case of SPI with a duration of 1 month, which means that groundwater level fluctuation is similar to SPI values. Moreover, in case of SPI with a duration of 3 month, it is found that groundwater level can be a leading indicator to predict the SPI values I week later. Some of the national groundwater monitoring stations can be designated as DIW (Drought Index Well) based on the detailed survey of site characteristics and also new DIWs need to be drilled to assess and forecast the drought in this country.

Geochemical Studies of $CO_2$-rich Waters in Chojeong area II. Isotope Study (초정지역 탄산수의 지화학적 연구 II. 동위원소)

  • 고용권;김천수;배대석;최현수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 1999
  • The $CO_2$-rich waters in the Chojeong area are characterized by low pH (5.0~5.8), high $CO_2$pressure (about 1 atm) and high amounts of total dissolved iou (up to 989 mg/L) and chemically belong to Ca-HC $O_3$type. The oxygen. deuterium and tritium isotope data indicate that the mixing process occurred between $CO_2$-rich water and surface water and/or shallow groundwaters and also suggest that the $CO_2$-rich water has been derived from meteoric waters. According to $\delta$$^{13}$ C values (-8.6~-5.3$\textperthousand$). the $CO_2$ in the water is attributed from deep seated $CO_2$gas. The high dissolved carbon (-14.4~-6.8$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the granitic terrain might be affected by $CO_2$-rich water, whereas the dissolved carbon (-17.9~-15.2$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the metamorphic terrain is likely controlled by soil $CO_2$ and from the reaction with calcite in phyllite. Sulfur isotope data (+3.5~+11.3$\textperthousand$,$\delta$$^{34}$ $S_{SO4}$) also support the mixing process between $CO_2$-rich water and shallow groundwater. Strontium isotopic ratio ($^{87}$ Sr/$^{86}$ Sr) indicates that the $CO_2$-rich water (0.7138~0.7156) is not related to vein calcite (0.7184) of Buak mine or calcite (0.7281~0.7346) in phyllite. By nitrogen isotope ($\delta$$^{15}$ $N_{NO3}$) the sources of nitrogen (up to 55.0 mg/L, N $O_3$) in the $CO_2$-rich water are identified as fertilizer and animal manure. It also indicates the possibility of denitrification during the circulation of nitrogen in the Chojeong area. The possible evolution model of the $CO_2$-rich water based on the hydrochemical and environmental isotopic data was proposed in this study. The $CO_2$-rich waters from the Chojeong area were primarily derived from the reaction with granite by supply of deep seated $CO_2$. and then the $CO_2$-rich water was mixed and diluted with the local groundwater.ter.

  • PDF

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

Evaluation of Denitrification Efficiency and Functional Gene Change According to Carbon(Fumarate) Concentration and Addition of Nitrate Contaminated-soil in Batch System (회분식반응조 실험을 통한 탄소원(Fumarate) 주입조건에 따른 지하수 중 탈질율 및 탈질 관련 기능성 유전자 분석)

  • Park, Sunhwa;Kim, Hyun-Koo;Kim, Moon-su;Lee, Gyeong-Mi;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Young;Kim, Tae-seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.80-89
    • /
    • 2015
  • Nitrate is on the most seriou pollutant encountered in shallow groundwater aquifer in agricultural area. There are various remediation technologies such as ion exchange, reverse osmosis, and biological denitrification to recover from nitrate contamination. Biological denitrification by indigenous microorganism of the technologies has been reviewed and applied on nitrate contaminated groundwater. In this work, we selected the site where the annual nitrate (NO3) concentration is over 105 mg/L and evaluated denitrification process with sampled soil and groundwater from 3 monitoring wells (MW4, 5, 6). In the results, the nitrate degradation rate in each well (MW 4, 5, and 6) was 25 NO3 mg/L/day, 6 NO3 mg/L/day, and 3.4 NO3 mg/L/day, respectively. Nitrate degradation rate was higher in batch system treated with 2 times higher fumarate as carbon source than control batch system (0.42M fumrate/1M NO3), comparing with batch system with soil sample. This result indicates that increase of carbon source is more efficient to enhance denitrification rate than addition of soil sample to increase microbial dynamics. In this work, we also confirmed that monitoring method of functional genes (nirK and nosZ) involved in denitrification process can be applied to evaluated denitrifcation process possibility before application of field process such as in-situ denitrification by push-pull test.

Geochemistry of the Heunghae, Pohang Geothermal Fields, Korea (포항 흥해지역 지열대의 지화학)

  • Yun Uk;Cho Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.45-55
    • /
    • 2005
  • The geothermal research has been carried out on the Heunghae, Pohang geothermal area know as having geo-heat-flow area in the Korean peninsula. This study results so far indicate that geothermal water in the area is in peripheral waters of hydrothermal area and is not in equilibrium with the reservoir rock. The average oxygen and hydrogen stable isotope values are as follows: deep groundwater $(average:\;{\delta}^{18}O=-10.1\%_{\circ},\;{\delta}D=-65.8\%_{\circ})$, intermediate groundwater (average: $(average:\;{\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ})$, shallow groundwater $(average:\;{\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ})$, surface water $(average:\;{\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ})$ respectively. Deep groundwaters was originated from a local meteoric water recharged from distant, topographically high mountain region and not affected by the sea water. High temperature zone inferred from water geothermometers is around D-1, D-5, D-6, 1-04 well zones. The estimated enthalpy from Silica-enthalpy mixing model is near 410 kJ/kg, which corresponds to the temperature of $98^{\circ}C$, and in consistent with the result of Na-K and K-Mg geothermometer.