• 제목/요약/키워드: Shallow dose

검색결과 46건 처리시간 0.02초

Co/Ti 이중막 실리사이드 접촉을 갖는 p$^{+}$-n 극저접합의 형성 (Formation of p$^{+}$-n ultra shallow junction with Co/Ti bilayer silicide contact)

  • 장지근;엄우용;신철상;장호정
    • 전자공학회논문지D
    • /
    • 제35D권5호
    • /
    • pp.87-92
    • /
    • 1998
  • Ultr shallow p$^{+}$-n junction with Co/Ti bilayer silicidde contact was formed by ion implantation of BF$_{2}$ [energy : (30, 50)keV, dose:($5{\times}10^{14}$, $5{\times}10^{15}$/$\textrm{cm}^2$] onto the n-well Si(100) region and by RTA-silicidation and post annealing of the evaporated Co(120.angs., 170.angs.)/Ti(40~50.angs.) double layer. The sheet resistance of the silicided p$^{+}$ region of the p$^{+}$-n junction formed by BF2 implantation with energy of 30keV and dose of $5{\times}10^{15}$/$\textrm{cm}^2$ and Co/Ti thickness of $120{\AA}$/(40~$50{\AA}$) was about $8{\Omega}$/${\box}$. The junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$ -n ultra shallow junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$-n ultra shallow junction with Co/Ti bilayer silicide contact did not show any agglomeration or variation of sheet resistance value after post annealing at $850^{\circ}C$ for 30 minutes. The boron concentration at the epitaxial CoSi$_{2}$/Si interface of the fabricated junction was about 6*10$6{\times}10^{19}$ / $\textrm{cm}^2$./TEX>.

  • PDF

방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구 (A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital)

  • 이주아
    • 한국방사선학회논문지
    • /
    • 제17권2호
    • /
    • pp.249-255
    • /
    • 2023
  • 본 연구는 방사선작업종사자, 방사선관계종사자 그룹의 방사선사들과 수시출입자로 분류된 예비 방사선사인 재학생의 임상실습 과정에서의 피폭선량을 측정하였다. 2021년 1월부터 1년 동안 인천소재의 C 대학병원의 방사선구역에서 근무하였던 방사선사들과 동 의료기관에서 7월 1일부터 8월 31일까지 임상실습을 이수한 121명의 학생들을 연구대상으로 하였다. 방사선 피폭선량으로 인하여 손상위험장기인 폐의 피폭선량으로 인한 부작용 발생확률을 평가하기 위하여 ICRP 103[12]에 의거한 명목위험계수(Nominal Risk Factor)를 사용하였다. 임상실습기간 중 수시출입자로 분류된 방사선(학)과 학생들의 표층선량은 0.98 ± 0.14 mSv, 심부선량은 0.93 ± 0.14 mSv였다. 즉, 표층선량은 1,000,000당 6.7명, 심부선량은 6.4명이 폐의 피폭선량으로 인한 부작용 발생률이 있음이 나타났다. 이는 1년 피폭선량의 환산 값으로 방사선(학)과 교육과정이 3년 혹은 4년임을 고려하였을 때, 임상실습을 나가는 예비 방사선종사자들에 대한 체계적인 관리와 관심이 필요하며, 방사선의 확률적 영향과 관련하여 방사선 안전관리를 위한 기초자료로 활용될 것으로 사료된다.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구 (The study of plasma source ion implantation process for ultra shallow junctions)

  • 이상욱;정진열;박찬석;황인욱;김정희;지종열;최준영;이영종;한승희;김기만;이원준;나사균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

복부(腹部) 단순X선검사시(單純X線檢査時) 피검자(被檢者)의 피폭선량(被曝線量)에 대(對)한 연구(硏究) (A Study of the Medical Exposure Dose in Abdomen A-P X-ray Examination)

  • 김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제17권1호
    • /
    • pp.49-54
    • /
    • 1994
  • This study was conducted to find out the medical exposure dose in simple abdomen A-P projection of adults, based on the 87 hospitals located in Seoul. As the results, the following conclusions have been reached; 1. 88.5 % of the surveyed hospitals had the use of $65\;kVp{\sim}79\;kVp(M{\pm}SD:71.45{\pm}4.73\;kVp)$ as tube voltage. 2. 87.35 % of the surveyed hospitals had the use of $50\;mAs{\sim}89\;mAs(M{\pm}SD:64.31{\pm}16.21\;mAs)$ as the amount of current. 3. Shallow doses ranged from 2.00 mSv to 4.99 mSv($M{\pm}SD:3.81{\pm}1.01\;mSv$) in 80.46 % of the surveyed hospitals. 4. Exposure dose was directly depended on the tube voltage or the amount of currents.

  • PDF

The Analysis of p-MOSFET Performance Degradation due to BF2 Dose Loss Phenomena

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Continued scaling of MOS devices requires the formation of the ultra shallow and very heavily doped junction. The simulation and experiment results show that the degradation of pMOS performance in logic and SRAM pMOS devices due to the excessive diffusion of the tail and a large amount of dose loss in the extension region. This problem comes from the high-temperature long-time deposition process for forming the spacer and the presence of fluorine which diffuses quickly to the $Si/SiO_{2}$ interface with boron pairing. We have studied the method to improve the pMOS performance that includes the low-energy boron implantation, spike annealing and device structure design using TCAD simulation.

140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가 (Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield)

  • 김지영;이왕희;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권2호
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

비소 비정질화 방법에 의한 얕은 $p^+$-n 접합의 형성과 특성분석 (Formation of the Shallow $p^+$ -n Junction by As-Preamorphization Method and Characterization)

  • Sang Jik Kwon
    • 전자공학회논문지A
    • /
    • 제30A권11호
    • /
    • pp.113-121
    • /
    • 1993
  • In the formation of the shallow p$^{+}$-n junction, the preamorphization method by As$^{+}$ ions was applied in order to avoid the boron channeling effect which is occured during the B$^{+}$ implantation especially with low energy. By As$^{+}$ pre-implant with 60KeV energy and 2*10$^{14}$ cm$^{-2}$ dose, the channelinf of B$^{+}$ ions implanted with 10keV/1.5*10$^{14}$ cm$^{-2}$ can be avoded completely. After the RTA of 1050.deg. C and 10sec, the junction depth was 0.14.mu.m, the leakage current was 20nA/cm$^{2}$(at-5V bias) and the sheet resistance was 107.OMEGA./ㅁ. And the preamorphized Si layer was changed into the perfect crystal si after the RTA.r the RTA.

  • PDF

방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰 (A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials)

  • 김희근;공태영;동경래;최은진
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.

파노라마 촬영시 눈과 갑상선에 미치는 표면선량에 관한 연구 - TLD, PLD 중심으로 - (A study on the effects of scattering dose on eyes and thyroid for panoramagraphy - Focus on TLD and PLD -)

  • 동경래
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.1118-1123
    • /
    • 2009
  • 파노라마 촬영 시 눈과 갑상선의 표면선량 실험은 광주지역 10개 병원을 대상으로 열형광선량계(Thermoluminescent dosimeter, TLD)와 형광유리선량계(Photoluminescent dosimeter, PLD)를 이용하여 각각 병원에서 사용하는 조건으로 측정(measurement)하였다. ICRP 60과 ICRP 73에서 권고한 눈에 대한 허용기준은 15mSv, 갑상선에 대한 허용기준은 연간 1mSv이다. 왼쪽 눈(Left Eye)의 TLD와 PLD값은 각각 0.19mSv와 0.24mSv, 오른쪽 눈(Right Eye)의 TLD와 PLD의 값은 0.23mSv와 0.25mSv, 갑상선의 TLD와 PLD의 값은 0.08mSv와 0.25mSv로 허용기준치를 초과하지 않았다. 또한 각 장기에 대한 TLD와 PLD의 비교에서는 왼쪽 눈과 갑상선이 유의한 차이가 있다고 볼 수 있고(p<0.01), 오른쪽 눈은 유의한 차이가 없다고 볼 수 있다(p>0.05). 각 병원에서 사용하는 파노라마 기기로 눈과 갑상선에 미치는 선량을 TLD와 PLD로 측정 하였을 때 눈과 갑상선의 표면선량은 ICRP 60에서 권고한 선량을 넘지 않았지만, 확률적 영향이 일어날 수 있으므로 모든 준위의 선량에 대해서 고려되어야 한다.

  • PDF