• Title/Summary/Keyword: Shallow depth

Search Result 1,027, Processing Time 0.023 seconds

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.223-232
    • /
    • 2008
  • In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

A Numerical Study to Evaluate the Resistance Performance of a Ro-Pax Hull Form in Shallow Water (Ro-Pax 선형의 천수역에서 조파저항성능 평가를 위한 수치적 연구)

  • Hong, Chun-Beom;Shin, Soo-Chul;Kim, Jung-Joong;Choi, Soon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.315-321
    • /
    • 2005
  • The effect of water depth on the wave making resistance performance is great where Froude number based on the water depth is close to one. The increase of wave making resistance due to the shallow water effect is evaluated by a numerical analysis in the present study. Three-dimensional Navier-Stokes and continuity equations are employed for the present study and the equations are discretized by finite difference method. The interface between water and air is determined by the level set method. In order to validate the numerical method, the change of resistance performance for Wigley hull according to the water depth is evaluated and the computed resistance coefficient is compared with measured one. The present numerical method is applied for the simulation of wave phenomena around a Ro-Pax hull form and the computed results are discussed in the resistance performance point of view.

Development of Earthquake Prevention Technique Considering Geotechnical Site Characteristics of Korea (국내 지반조건이 고려된 지진 방재기술 확립 방안;지반분류 방법 개선 방안을 중심으로)

  • Kim, Dong-Soo;Yoon, Jong-Ku;Kim, Kyung-Teak;Cho, Seong-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.154-162
    • /
    • 2005
  • In this paper, site response analyses were performed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. Also the current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_a$ and $F_v$) and the fundamental site periods, and site coefficients were grouped based on site periods in the regions of shallow bedrock. The standard deviations of the proposed method was reasonable compared to site classification based on $V_{S30}$. Finally, new site classification system is recommended based on site periods for regions of shallow bedrock depth in Korea.

  • PDF

A Study on Transient Analysis of Linear Induction Motor with Ununiform Airgap for Shallow-depth Underground Train (저심도철도용 선형유도전동기의 공극 불균일 과도특성 분석 연구)

  • Lee, Hyung-Woo;Park, Chan-Bae;Won, Sunghong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.723-729
    • /
    • 2013
  • This paper presents an parallel type Linear Induction Motor with ununiform airgap for a shallow-depth underground train with 100‰ grade and 15 m curvature. This parallel type LIM has enough gradability but has inherently ununiform airgap between center and end parts. Consequently, performance when the train passes curved section should be considered with transient analysis. Moreover, general parallel operation, 1C2M which is usually used for train operation, deteriorates LIM performance because of different line velocity between inner and outer LIMs. Transient analysis has many problems such as huge model, lots of meshes, very long calculation time, truncation error and so on. This paper has presented a novel technique using equivalent linear rotating model in order to solve these problems and has analyzed parallel type LIM by using the proposed technique. Finally, LIM performance according to independent operating control has been investigated.

Vertical Distribution of Mega-invertebrate and Calculation to the Stock Assessment of Commercial Species Inhibiting Shallow Hard-bottom in Dokdo, Korea (독도 연안 암반에 서식하는 초대형 저서동물의 수직분포와 산업종의 현존량 추정)

  • Park, Heung-Sik;Park, Rae-Sun;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.457-464
    • /
    • 2002
  • Distribution and stock assessment of mega-benthos living in the shallow hard bottom around Dokdo were studied in July,2000. Depth and topographical conditions have affected to the densities and biomass of benthic animals. In shallow area, less than 10 m depth, turbo shell Batillus cornutus, mussel, Mytilus corusucs were dominated and showed distinct patterns in vertical distribution. On the other hand, the area over 10m depth, it showed diverse pattern depending on topography. Turbo shell, mussel and sea cucumber Stichopus japonicus were dominated in terms of fishery resources, but abalones were rarely sampled. Stock assessment were estimated to be 6.54 M/T, 3.89 M/T and 8.92 M/T, respectively. Some parts of coastal hard bottom around Dokdo, such as the area between Dongdo and Seodo, seemed to play an Important role as nursery ground. Therefore, it is necessary to the environmental monitoring for coastal fishery managements aspects.

Numerical Simulation of Hydraulic Jump (도수의 수치 모의)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.749-762
    • /
    • 2023
  • A depth-integrated model with an approximate Riemann solver for flux computation of the shallow water equations was applied to hydraulic jump experiments. Due to the hydraulic jump, different flow regimes occur simultaneously in a single channel. Therefore, the Weisbach resistance coefficient, which reflects flow conditions rather than the Manning roughness coefficient that is independent of depth or flow, has been employed for flow resistance. Simulation results were in good agreement with experimental results, and it was confirmed that Manning coefficients converted from Weisbach coefficients were appropriately set in the supercritical and subcritical flow reaches, respectively. Limitations of the shallow water equations that rely on hydrostatic assumptions have been revealed in comparison with hydraulic jump experiments, highlighting the need for the introduction of a non-hydrostatic shallow-water flow model.

Underwater Sound Propagation in a range-dependent Shallow water environment (비균질한 천해에서의 수중음파 전파)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.64-73
    • /
    • 1987
  • Low frequency sound propagation in a range-dependent shallow water environment of the Korea Strait has been studied by using the adiabatic coupled mode, ADIAB. The range-dependent environment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and attenuation coefficients and water depths. For shallow source and receiver depths, the most important mechanism involved in the propagation loss is the depth changing character of mode functions that strongly depends on the local sound velocity profile. Application of the adiabatic coupled mode theory to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction effects. Underwater sound propagation in a range-dependent shallow-water environment.

  • PDF

A Case Study of Scour Vulnerability Evaluation for Shallow Foundations during Floods (홍수시 얕은기초의 세굴위험도 평가 사례연구)

  • Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.59-62
    • /
    • 2008
  • Scour vulnerability evaluation for shallow foundations was performed to assure bridge safety against scour in the national capital region. The case studies for 26 shallow foundations consisted of site investigation including boring test, bridge scour analysis for the design flood, bearing capacity evaluation of the bridge foundation before and after scour, and comprehensive evaluation of bridge scour vulnerability. Bridge scour vulnerability was determined based on the interdisciplinary concept considering predicted scour depth for the design floods and bearing capacity of foundation as well as dimensions of foundation. Nine of 26 shallow foundations showed the potential future vulnerability to scour with significant decrease in the bearing capacity of foundations due to scour and the remaining 17 were expected to maintain their stability against scour.

  • PDF

Influence analysis of continuous pile walls on the behavior of a soil tunnel at the shallow depth through a parametric study (민감도 분석을 통한 주열식벽체가 저토피 토사터널 거동에 미치는 영향 분석)

  • You, Kwang-Ho;Yoon, Woo-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • In recent years, utilization of underground space has been increasing in various parts of the world. In particular, open-cut method is usually applied to the shallow depth excavation. However some problems such as extreme traffic congestion and unstability of adjacent structures etc. might occur. In order to cope with these problems, the M-CAM (Modified Cellular Arch Method) method was proposed to excavate soil tunnels at shallow depth with secured enough stability and minimized construction period. In this study, sensitivity analysis was performed to predict the influence of the size of CPW(Continuous Pile Wall) and ground conditions on the behavior of the tunnel. First of all, embedded depth and diameter (or thickness) of CPW, coefficient of lateral earth pressure, and ground conditions were selected as parameters that could affect tunnel stability. Meanwhile, FLAC 2D based on finite difference method was used for numerical analysis. As a result of this study, it was checked out that embedded depth among sizes of CPW had a greatest influence on the stability of a tunnel.