• Title/Summary/Keyword: Shaft vibration

Search Result 651, Processing Time 0.025 seconds

NRRO Analysis of HDD Ball Bearings with Geometric Imperfections (기하학적 형상오차를 갖는 정보저장기기용 볼베어링의 NRRO 해석)

  • 김영철;최상규;윤기찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.810-816
    • /
    • 2001
  • In this paper, we theoretically analyzed the NRRO(the non-repeatable run-out) of a ball bearing with geometric imperfection. The quasi-static and dynamic analysis of a ball bearing was performed to calculate the displacement of shaft center caused by the form errors while the shaft is rotating. From consideration of the generating mechanism of NRRO, it is found that the waviness of one ball generates vibrations with nf$\sub$b/${\pm}$f$\sub$c/(where n is odd) components. Also it is confirmed that the outer race waviness of the order n = jZ${\pm}$1 generates vibration with jZf$\sub$c/ components. The form errors of ball bearing elements were precisely measured and NRRO of a ball bearing was calculated using the measured data. It is concluded that the ball bearings must has large ball number and small ball diameter to obtain low NRRO.

  • PDF

Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings Taking into Account Stator's Flexibility (고정자의 유연성을 고려한 유체베어링 지지 HDD 스핀들 계의 진동해석)

  • Lim, Seungchul;Chun, Sang-Bok;Han, Yun-Sik;Lee, Ho-Seong;Kim, Cheol-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.749-756
    • /
    • 2005
  • This paper presents vibration analyses of hard disk drive (HDD) spindle systems based on the finite element method. The systems under investigation have a cantilevered shaft rotating on hydrodynamic bearings. In particular, the influence of stator's flexibility on major modes has been taken into account in dual ways lumped and distributed-parameter model approfches. Even the latter employs relatively macroscopic elements instead of extremely fine ones Popular in commercial codes. In order to prove the effectiveness of such formulated models, two types of HDD prototypes featuring different hub and stator structures are selected as examples. Compared to the first, the second type has a reinforced stator that would raise the natural frequency of the hub's translational (or sideway) mode. Both free and forced vibration characteristics are computed, and subsequently compared with the experimental data. It is our conclusion that Particularly the Proposed distributed model method is an efficient design tool for state-of-the-art HDD spindle systems.

An Experimental Study on Tooth-Meshing Frequency Components in Noise/Vibration of a Gearbox Under Operational Conditions (기어 박스 구동시 회전수 변화에 따른 이 맞물림 주파수 소음/진동 성분의 증폭에 대한 실험적 연구)

  • Lee, Seong-Hun;Kim, Kwang-Joon;Ha, Jae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1096-1101
    • /
    • 2000
  • In machine tools, often a gearbox is installed to control the rotating speed of spindle, which sometimes generates problems of noise and vibration due to errors in tooth-meshing. In this study, the characteristics of, noise and vibration of given gearbox for a machine tool are analyzed experimentally. From the measurement, it was observed that the tooth-meshing component of the sound pressure level from the gearbox took its maximum at a specific operational speed. Therefore, the main content of this study is to investigate the reason why the above mentioned characteristics are observed. By investigating the natural frequencies of the components in gearbox, it was found that the natural frequencies of the rotating gear-shaft and gearbox for twisting mode were closely related to the first and second peak of sound pressure levels respectively. Thereform, in this study, those relations were identified by the impact test of rotating gear-shaft and-gearbox. In addition, we inserted the rubber between housing and bed, and analyze the effect of the rubber insertion on noise reduction by Operational Deflection Shapes.

  • PDF

Use of dynamic absorber for reduction of shaft vibration in diesel engines of ship (축계진동 저감을 위한 동흡진기의 제안)

  • Park, Sok-Chu;Park, Kyung-Il;Kim, Jeong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.743-748
    • /
    • 2016
  • Ship's diesel engines have intrinsic problem to make vibrations caused by cylinder explosion and unbalanced rotating mass. These vibrations might induce noises, are transferred to hull and neighboring structures and cause secondary vibrations. This paper suggests the use of an additional dynamic absorber with a sub-vibration system to reduce the aforementioned vibrations. This dynamic absorber is designed based on an analysis of the free vibration of the engine shafting system and the forced vibrations.

A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구)

  • Seo-Won Jang;Se-Ho Park;Young-kuk Kim;Min-Woo Kim;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

A Study on Shaft Alignment of the Rotating Machinery by Using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • Kim, Koung-Suk;Jang, Wan-Shik;Na, Sang-Soo;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.126-132
    • /
    • 2002
  • Misaligned shafts of the rotating machinery have caused noise, vibration. bearing failures, and stress concentration of coupling parts which decrease the efficiency and life of shaft systems. Therefore the proper shaft alignment of those system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition a telemetry system is used. In this study, the condition of the least bending moment which is known by analyzing the structure and stress induced by misalignment is found. After the shaft is aligned by dial gage, a telemetry system with strain gages is installed on shaft. The relationship between bearing displacement and moment of coupling part influenced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as in dynamic state with 100∼700 rpm.

Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation (100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석)

  • 이안성;김영철;박종권
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF

Seismic Behavior of Rotation Shaft System at Start-up (기동시 회전축계의 지진응답 거동)

  • 김상환
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • A rotating shaft system subjected to seismic motions has been investigated for the various operating modes at start-up. During an earthquake excitation, the rotor may hit the stator of machines due to the excessive deformation of shaft, and thus the response of rotating shaft system of which foundation is supported by the vibration isolation devices has been simulated. In order to examine the transient response of the rotating shaft system at the start-up to both the various operating conditions and the seismic excitation simultaneously, nonlinear equations of motion are derived and solved numerically using Runge-Kutta method. The response of the rotating shaft system is calculated according to the operating modes as recommended by the machine and the system parameters such as the spring stiffness of isolation devices.

  • PDF

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.