• Title/Summary/Keyword: Shaft load

Search Result 588, Processing Time 0.019 seconds

A Study on Optimal Parameter Selection for Health Monitoring of Turboprop Engine (PT6A-62) (터보프롭엔진(PT6A-62)의 성능저하 진단을 위한 최적 계측 변수 선정에 관한 연구)

  • 공창덕;기자영;장현수;오성환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-97
    • /
    • 2000
  • A steady state performance simulation and diagnostics program for the turboprop engine (PT6A-62), which is the power plant of the first developed military basic trainer KT-1 in Republic of Korea, was developed. The developed steady state performance analysis program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters were discussed to evaluate validity of the developed program at various cases such as altitude, flight velocity and part load variation. GPA(Gas Pass Analysis) allows engine performance deterioration to be identified at the module level in terms of reduction in component efficiencies and changes in mass flow. In order to find optimal instrument set to detect the physical faults such as fouling, erosion and corrosion, a gas path analysis approach is utilized. This study was performed in two cases for selection of optimal measurement parameters. One case was considered with the effect of instrument number by changing independent parameter number. The other case was performed with selection of independent parameter set. According to the analysis results, the optimal measurement parameters selected were eight dependent variables such as shaft horsepower, fuel flow rate, compressor exit pressure and temperature, compressor turbine inlet pressure and temperature and power turbine inlet pressure and temperature.

  • PDF

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles (항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구)

  • Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.15-26
    • /
    • 2006
  • Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (I) - Material Strength - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (I) - 재료 강도 -)

  • Kim, Sung-Ryul;Lee, Juhyung;Park, Jae-Hyun;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.259-266
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the numerical models and the related input parameters were analyzed to simulate the axial load-movement relations, which were obtained from the compression loading tests for the cylindrical specimens of the steel pipe, the concrete, and the steel-concrete composite. As the results, the behavior of the steel pipe was simulated by the von-Mises model and that of the concrete by the strain-softening model, which decreases cohesion and dilation angles as the function of plastic strains. In addition, the reinforcing bars in the concrete were simulated by applying the yielding moment and decreasing the sectional area of the bars. The applied numerical models properly simulated the yielding behavior and the reinforcement effect of the steel-concrete composite piles. The parametric study for the real-size piles showed that the material strength of the steel-concrete composite pile increased about 10% for the axial loading and about 20~45% for the horizontal loading due to the reinforcement effect by the surrounding steel pipe pile.

A Review on Ultimate Lateral Capacity Prediction of Rigid Drilled Shafts Installed in Sand (사질토에 설치된 강성현장타설말뚝의 극한수평지지력 예측에 관한 재고)

  • Cho Nam Jun;Kulhawy F.H
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • An understanding of soil-structure interaction is the key to rational and economical design for laterally loaded drilled shafts. It is very difficult to formulate the ultimate lateral capacity into a general equation because of the inherent soil nonlincarity, nonhomogeneity, and complexity enhanced by the three dimensional and asymmetric nature of the problem though extensive research works on the behavior of deep foundations subjected to lateral loads have been conducted for several decades. This study reviews the four most well known methods (i.e., Reese, Broms, Hansen, and Davidson) among many design methods according to the specific site conditions, the drilled shaft geometric characteristics (D/B ratios), and the loading conditions. And the hyperbolic lateral capacities (H$_h$) interpreted by the hyperbolic transformation of the load-displacement curves obtained from model tests carried out as a part of this research have been compared with the ultimate lateral capacities (Hu) predicted by the four methods. The H$_u$ / H$_h$ ratios from Reese's and Hansen's methods are 0.966 and 1.015, respectively, which shows both the two methods yield results very close to the test results. Whereas the H$_u$ predicted by Davidson's method is larger than H$_h$ by about $30\%$, the C.0.V. of the predicted lateral capacities by Davidson is the smallest among the four. Broms' method, the simplest among the few methods, gives H$_u$ / H$_h$ : 0.896, which estimates the ultimate lateral capacity smaller than the others because some other resisting sources against lateral loading are neglected in this method. But it results in one of the most reliable methods with the smallest S.D. in predicting the ultimate lateral capacity. Conclusively, none of the four can be superior to the others in a sense of the accuracy of predicting the ultimate lateral capacity. Also, regardless of how sophisticated or complicated the calculating procedures are, the reliability in the lateral capacity predictions seems to be a different issue.