• Title/Summary/Keyword: Shaft Connected Generator

Search Result 15, Processing Time 0.022 seconds

Torsional Stress Analysis of Turbine-Generator Connected to HVDC System (HVDC단에 연결된 터빈-발전기의 비틀림 스트레스 해석)

  • 김찬기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.416-426
    • /
    • 2001
  • This paper deals with the impact of an inverter station on the torsional dynamics of turbine-generator which is located at the inverter side of a HVDC-AC network power system. The studies show that the torsional stress of turbine-generator depends on the AC network fault locations because of the commutation failures of inverter station. And the torsional stress induce fatigue in the shaft material and reduce the shaft life-time. So, the purpose of this paper is to analysis the torsional stress of turbine-generator shaft at inverter side, to find the checked points of turbine-generator. The EMTDC program is used for the simulation studies.

  • PDF

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

A Design and Voltage Control of a High Efficiency Generator with PM Exciter (고효율 영구자석 여자기 구조의 발전기 설계와 전압제어)

  • Jo, YeongJun;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1827-1834
    • /
    • 2016
  • This paper presents a high efficient generator with PM(Permanent Magnet) exciter. The proposed PM exciter for the generator can produce a linear output voltage according to the engine speed. This output voltage is directly used to control the field current of the generator to adjust the generator output voltage. In the proposed generator system, since the field winding current can be supplied by the PM exciter, the generator can self-start without any battery or an external power supply due to the low residential flux. Furthermore, the operating efficiency of the generator is higher than a conventional winding exciter. The main problem of the proposed generator system, the field winding current controller has to be embedded inside the generator, and it rotates according to the generator shaft. In this paper, the proper embedded current controller is designed for the proposed generator system. Due to the embedded controller cannot be connected to the outside the generator controller, the measured instantaneous output voltage of the generator is transferred by the photo isolated communication using shaft aligned infrared transmitter and receiver to keep the constant generator output voltage. In this paper, 10kW, 380V engine generator with PM exciter and the embedded DAVR(Digital Automatic Voltage Regulator) are described. The proposed high efficiency generator is simulated and tested to verify the effectiveness.

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

Eigen-analysis of SSR in Power Systems with Modular Network Model Equations (Modular 네트워크 모델 구성에 의한 전력계통 SSR 현상의 고유치해석)

  • Nam, Hae-Kon;Kim, Yong-Gu;Shim, Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1239-1246
    • /
    • 1999
  • This paper presents a new algorithm to construct the modular network model for SSR analysis by simply applying KCL to each node and KVL to all branches connected to the node sequentially. This method has advantages that the model can be derived directly from the system data for transient stability study and turbine/generator shaft model, the resulted model in the form of augmented state matrix is very sparse, and thus efficient SSR study of a large scale system becomes possible. The proposed algorithm is verified with the IEEE First and Second Benchmark models.

  • PDF

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

Loss Cut of Air-Cooled Waterwheel Generator with AC Variatle Speed Drive for Cooling Fan Motor(s) (교류 가변속 장치의 냉각팬 적용에 의한 수력 발전기 손실 저감)

  • Hur, Sung-Kwang;Rhew, Hong-Woo;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.579-582
    • /
    • 1989
  • The air-cooled waterwheel generator has a fan connected to waterwheel shaft or motor driven fan or fans. The fans are operated at constant speed, constant input, regardless of generator loss which is varied according to generator output and coolant the perature. Energy savings may he possible if the cooling air flow is controlled according to generato output and air temperature depending on season. The simulation and experience have been done on the 22.6 KVA Waterwheel generator by using AC variable speed drive. The results gave us los cut of generator.

  • PDF

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

Operational Control Logic of Series Hybrid Power System for the Unmanned Aerial Vehicle (무인기용 직렬 하이브리드 동력시스템 운용 제어로직)

  • Lee, Bohwa;Park, Poomin;Kim, Keunbae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • The series hybrid system targeted in this study uses a reciprocating engine, a generator, and a battery as a main power source for the unmanned aerial vehicle. The generator is directly connected to the drive shaft of the reciprocating engine, and the operating characteristics of the reciprocating engine-generator set were confirmed through ground integration tests. In this study, based on the test results, a control logic is proposed an efficient use of the reciprocating engine-generator power and battery power. Also, the power variations of the reciprocating engine-generator and battery according to the logic were verified through simulation. As a result, it was confirmed that the engine-generator power supplied the power required for propulsion along with the battery power by the proposed control logic.