Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.889-894
/
2009
Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.
Journal of information and communication convergence engineering
/
v.4
no.3
/
pp.123-129
/
2006
The limited number of roads and the increasing number of vehicles demand the automatic regulation of overspeed vehicles, illegal vehicles, and overloaded vehicles and the automatic charge calculation depending on the type of the vehicle. To meet such requirements, it is important to remove the shadow of the vehicle as processing and recognizing an image captured by a camera. The shadow of the vehicle is likely to cause misclassification of the vehicle type due to diverse errors and mistakes occurring when detecting geometrical properties of the vehicle. In case that shadows of two different vehicles are overlapped, not only the type of the vehicles may be misclassified but also it is difficult to accurately identify the type of the vehicles. In this paper, we propose a robust algorithm to remove the shadow of a vehicle by calculating the luminance, the chrominance, the gradient density of the cast shadow from information acquired using the image subtraction of the background, and to recognize the substantial vehicle figure. Even when it is hard to detect and split a target vehicle from its shadow as shadows of vehicles are attached to each other, our robust algorithm can detect the vehicle figure only. We implemented our system with a general camera and conducted experiments on various vehicles on general roads to find out our vehicle shade removal algorithm is efficient when detecting and recognizing vehicles.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.1
/
pp.91-99
/
2020
For the shadow removal technology that is the base technology of the image detection system, real-time image processing has a problem that the processing speed is reduced due to the calculation complexity and it is also sensitive to illumination or light because shadows are removed only by the difference in brightness. Therefore, in this paper, we improved real-time performance by reducing the calculation complexity through the removal of the weighting part in order to solve the problem of the conventional system. In addition, we designed and evaluated an image detection system based on a shadow removal algorithm that could improve the shadow recognition rate using a vertical histogram. The evaluation results confirmed that the average speed increased by approximately 5.6ms and the detection rate improved by approximately 5.5%p compared to the conventional image detection system.
As supplying of automatic surveillance or patrol systems based on image processing, the needs on object extraction technology from images increases. The extraction is more difficult when the lighting condition is changed from time to time. There are many approaches to extract objects from images excluding shadow. They have a common problem something like loss of object region according with shadow removal. In this paper a restoration method using color information of objects to complement the problem is presented. The usefulness of the method is verified using images taken from different lighting conditions and selected from well-known DB.
This paper presents a method to detect buildings using shadow information in satellite imagery. We classify image into three categories of building region, shadow region and background region to find buildings with consistent intensity. After the removal of noises in building regions and shadow regions, buildings adjacent to shadow regions are detected using the constraint of building and shadow sizes. The algorithm has been applied to KOMPSAT and SPOT images and the result showed buildings are efficiently detected.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.7
no.1
/
pp.32-41
/
2008
The moving object tracking in vision based observation using video uses difference method between GMM(Gaussian Mixture Model) based background and present image. In the case of racking object using binary image made by threshold, the object is merged not by object information but by Cast-Shadow. This paper proposed the method that eliminates Cast-Shadow using backpropagation Neural Network. The neural network is trained by abstracting feature value form training image of object range in 10-movies and Cast-Shadow range. The method eliminating Cast-Shadow is based on the method distinguishing shadow from binary image, its Performance is better(16.2%, 38.2%, 28.1%, 22.3%, 44.4%) than existing Cast-Shadow elimination algorithm(SNP, SP, DNM1, DNM2, CNCC).
Shadow is a common phenomenon observed in natural scenes, but it has a negative influence on image analysis such as object recognition, feature detection and scene analysis. Therefore, the process of detecting and removing shadows included in digital images must be considered as a pre-processing process of image analysis. In this paper, the existing methods for acquiring 1D invariant images, one of the feature elements for detecting and removing shadows contained in a single natural image, are described, and a method for obtaining 1D invariant images based on linear regression has been proposed. The proposed method calculates the log of the band-ratio between each channel of the RGB color image, and obtains the grayscale image line by linear regression. The final 1D invariant images were obtained by projecting the log image of the band-ratio onto the estimated grayscale image line. Experimental results show that the proposed method has lower computational complexity than the existing projection method using entropy minimization, and shadow detection and removal based on 1D invariant images are performed effectively.
Shadows are common phenomena observed in natural scenes and often bring a major problem that is affected negatively in colour image analysis. It is important to detect the shadow areas and should be considered in the pre-processing of computer vision. In this paper, the method of shadow detection is proposed using cross entropy and intensity image, and is performed in single image based on the satellite images. After converting the color image to a gray level image, the shadow candidate region has been estimated the optimal threshold value by cross entropy, and then the final shadow region has been detected using intensity image. For the validity of the proposed method, the satellite images is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow detection is well performed.
Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.
Kim, Jaedong;Seo, Hyunggoog;Cha, Seunghoon;Noh, Junyong
Journal of the Korea Computer Graphics Society
/
v.21
no.3
/
pp.1-10
/
2015
One way to create a visually immersive environment is to utilize a front projection system. Especially, when enough space is not available behind the screen, it becomes difficult to install a back projection system, making the front projection an appropriate choice. A drawback associated with the front projection is, however, the interference of shadow. The shadow can be cast on the screen when the user is located between the screen and the projector. This shadow can negatively affect the user experience and reduce the sense of immersion by removing important information. There have been various attempts to eliminating shadows cast on the screen by using multiple projectors that compensate for each other with missing information. There is trade-off between calculataion time and desired accuracy in this mutual compensation. Accurate estimation of the shadow usually requires heavy computation while simple approaches suffer from inclusion of non-shadow regions in the result. We propose a novel approach to removing shadows created in the front projection system using the skeleton data obtained from a depth camera. The skeleton data helps accurately extract the shape of the shadow that the user cast without requiring much computation. Our method also utilizes a distance field to remove the afterimage of shadow that may occur when the user moves. We verify the effectiveness of our system by performing various experiments in an interactive environment created by a front projection system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.