• Title/Summary/Keyword: Shading Ratio

Search Result 130, Processing Time 0.021 seconds

Flowering and Fruiting of Characteristics of Short Flowering Period Lines in Peanut (땅콩 단기개화성 선발 계통의 개화 및 결실 특성)

  • ;Jeom-Ho Ryu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.437-442
    • /
    • 2002
  • To breed high quality and yield peanut variety according to select the short flowering duration, fifteen germplasms (1 virginia,7 spanish,6 valencia types and var, Daekwang) were investigated the flowering habit and agronomic characteristics from 1998 to 1999. Emergence date of the selected short flowering duration germplasms (SPFGs) was earlier 1-3 days and middle or small seed than that of var, Daekwang. Main stem length was longer 57cm but the number of branches, pods, 100-seed weight, and pod weight per plant was reduced 25%, 23%, 42%, 46%, respectively, in SPFCs comparing to var, Daekwang. The flowering date in SPFGs was similar but the flowering duration was earlier 5-16 days than that of var, Daekwang (52 days). Varieties that flowered shorter duration than 50 days were 18.8% among the SPFGs. The number of total flowers in SPFGs was fewer 50% than that of var, Daekwang. The rate of flowering inhibition were 50-52% than that of var Daekwang. The frequencies of flowering duration (under 50 days) were 7.7% in virginia, 46.2% in spanish, 53.9% in valencia. The effect of shading treatment on rate of flowering inhibition were 11%, but number of branches and pods were reduced by 27-31% in valencia type compared to non-shade. Correlation coefficient was significant positively ($r=0.9314^*$ virginia, $r=0.9551^*$ spanish, $r=0.9551^*$ valencia) between the air temperature and flower number, The frequency of peg and pod number on 1st to 2nd nodes in SPFGs were more 3-12%, 21-26% than that of var. Daekwang. The rate of mature pods at 80 days after flowering were higher 12-17% than that of var, Daekwang (68%). Correlation coefficient was high significant negatively between date of first flower and flowering date, the ratio of mature pod.

Growth Characteristics of Veronica rotunda var. subintegra (Nakai) T.Yamaz. according to Several Cultivation Conditions (몇 가지 재배조건에 따른 산꼬리풀의 생육특성)

  • Lee, Sang In;Yeon, Soo Ho;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.24-32
    • /
    • 2020
  • This study was aimed to establish the most effective approach for the cultivation of Veronica rotunda var. subintegra (Nakai) T.Yamaz. plants, which was expected as new ornamental plants. We conducted an experiment using plug seedlings, varied the seeding container type and seeding rate. We also varied seedling quality, planting container, soil type, and shading ratio. Seedling quality was used seedlings produced from different seeding containers and seeding rates. The seedling quality were seeding growth using 162, 200, and 288 trays, and seedings rate was used seedlings produced by sowing 1, 2, 4 and 6 seeds. As a result, 162 trays of seedlings were suitable for use in this study. Plants grown with one seed per cell in individual cells exhibited increased individual growth, but those grown with four seeds per cell exhibited better growth for the whole plant. According to seedling quality, seedlings produced in the 162 trays or with four seeds per cell showed higher growth than other seedlings. In the cultivation of V. rotunda var. subintegra (Nakai) T.Yamaz., seedling growth increased depending on container capacity for both shoot and root parts. Container material had no significant impact on seedling growth. Seedlings grew the best on horticultural substrate, and showed better growth on mixed soils with high decomposed granite content than on peatmoss.

Growth and Tkber Development of 'Black Magic' Calla Lily as Affected by the Rain Shelter and Tuber Size (유색칼라 생육 및 구근 비대에 미치는 비가림 재배와 구근 크기의 효과)

  • Choi, So-Ra;Lim, Hoi-Chun;Choi, Dong-Chil;Choi, Sik-Joung;Ryu, Jung;Choi, Yeong-Geun;Eun, Jong-Sun
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.193-198
    • /
    • 2002
  • Growth and tuber development of ‘Black Magic’calla lily as affected by the rain shelter with 50% shading and the tuber size were investigated. Tubers of five grades in size were cultivated in the rain shelter or in the open field (control). Days to emergence of shoots in the rain shelter was accelerated by 4.2 days as compared to the open field. Emergence ratio was higher as the tuber was larger, tubers grown in the rain shelter showed the significance in the growth characteristics as compared to the control. There were no significant differences in the number of flowers per tuber between the rain shelter and the open field. Flower quality was 12.2 cm longer than that in the open field. flowering characteristics was improved with the increasing tuber size. Low infection of soft rot disease of 3∼22% was found in the rain shelter as compared to the that of 19∼83% in the open field. Thus tubers produced under the rain shelter showed improved quality, Even if the small tubers with diameters of 0.5∼1.0 cm were cultivated in the rain shelter, the weight and diameters of tuber harvested after approximately 7 months were 50.2 g and 5.7 cm, respectively.

Image Enhancement for 3D Shape Measurement Using Large Aperture Projection System (오목거울을 이용한 3차원 형상측정을 위한 모아레 영상 획득 방법)

  • Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2008
  • In general, a lens with large NA makes image quality better. There are many kinds of cheap concave mirrors with large aperture and NA. This paper presents a method that uses a large aperture projection imaging system to enhance the image used for 3D shape measurement. This method makes it possible to enhance reflection uniformity on the object surface and increases SNR (Signal to Noise Ratio). Using a large aperture lens, it is possible to obtain a brighter image, reducing the shading nature in the image boundary, and enhancing the reflection uniformity even on woven surfaces. Because of the exorbitant cost of a large aperture projection lens larger than 150 mm in diameter, a refractive lens was exchanged with a concave mirror resulting in the same optical effect. In experiment, changing NA $0.15{\sim}0.8$, image contrast was enhanced from 46 to 1.33. Incidentally, the effect of the concave mirror was tested successfully through the experiment.

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Change of Growth and Yield Characters in Rice at Different Transplanting Densities under Agrivoltaics (영농형 태양광 발전 시스템 하부 벼 재배 시 재식밀도별 생육 및 수량변화)

  • Woon-Ha Hwang;Min-Ji Lee;Jae-Hyeok Jeong;Hoe-Jung Jeong;Wan-Gue Sang;Seong-Yul Jang;Dong-Won Kwon;Woo-Jin Im;Heok-Jin Park;Ji-Hyen Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.88-96
    • /
    • 2024
  • Recently, interest in renewable energy development has been increasing to promote carbon-neutral policies. Agrivoltaic is a solar power generation facility with the potential to aid in meeting carbon-neutral policies. It has the advantage of generating electricity while farming takes place, but it also has the disadvantage of reducing crop yield and cultivation safety. We analyzed the rice yield, quality, and stem growth characteristics according to different transplanting densities under agrivoltaics. Under agrivoltaics, the number of rice panicles was reduced by the shading effect, but the reduction was lower under 60 hills than under 80 and 100 hills. Brown rice perfect ratio was increased under 60 hills under agrivoltaics. Brown rice yield did not differ significantly between 60 and 80 hills under agrivoltaics. However, stem dry weight by unit(mg/cm) in each internode showed highest under 60 hills compared to 80 and 100 hills under agrivoltaics. Therefore, 60 hill density was considered appropriate to ensure cultivation safety and yield when cultivated rice under agrivoltaics.

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

In vitro mass propagation and acclimatization of Haworthia truncata (하월시아 옥선(Haworthia truncata)의 기내 대량 증식 및 순화 조건 구명)

  • Kim, Youn Hee;Lee, Gee Young;Kim, Hye Hyeong;Lee, Jae Hong;Jung, Jae Hong;Lee, Sang Deok
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.127-135
    • /
    • 2019
  • The purpose of this study was to investigate suitable parts for callus induction and optimal concentrations of growth regulators, contained in the medium affecting shoot and rooting for in vitro mass production of Haworthia truncata. Leaves and flower bud showed 100% callus formation rate at NAA $1{\sim}2mgL^{-1}$ treatment, and NAA $1mgL^{-1}$ + TDZ $2mgL^{-1}$ treatment. The flower stalk showed 75% callus formation rate, at NAA $2mgL^{-1}$ + TDZ $2mgL^{-1}$ treatment in H. truncata. While the rate of callus formation was high in leaves and flower bud, leaves were the most efficient in obtaining most culture parts. Shoot induction rate from callus was highest, at NAA $0.1mgL^{-1}$ treatment in H. truncata. Additionally, the number of shoots formation was 66.3 shoots high, in NAA $1mgL^{-1}$ + BA $0.1mgL^{-1}$ treatment in H. truncata. In the case of acclimatization of regenerated plant, growth characteristics did not show significant difference (95%) shading with respect to the different ratio of substrate mixture, and it was determined that would be appropriate, considering plant height and appearance preference of H. truncata. It was established that optimization of culture condition, was responsible for mass propagation in vitro cultures of H. truncata.

Establishment of tissue culture and acclimatization method for in vitro mass propagation of Echeveria laui and Echeveria elegans (에케베리아 라우이(Echeveria laui)와 엘레강스(Echeveria elegans)의 대량증식을 위한 조직배양 및 순화 조건 확립)

  • Kim, Youn Hee;Lee, Gee Young;Kim, Hye Hyeong;Lee, Jae Hong;Jung, Jae Hong;Lee, Sang Deok
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • The objective of this study was to investigate the suitable parts for callus induction and optimal concentrations of growth regulators contained in the medium affecting shooting and rooting Echeveria laui and Echeveria elegans for in vitro mass production. To determine the suitable plant parts for callus induction, the leaves were divided into upper, medium and bottom parts and cultured on MS medium at different concentrations with $0{\sim}2mgL^{-1}\;NAA$ and $0{\sim}4 mgL^{-1}BA$. The upper and middle parts of leaves both showed 100% callus formation rate with $NAA\;1\;mgL^{-1}$ and $BA\;1\;mgL^{-1}$ treatment in E. laui. The middle parts of leaves showed 83.3% callus formation rate at $NAA\;2\;mgL^{-1}$ and BA 4 mgL-1 treatment in E. elegans. The shoot induction rate from callus was highest at $NAA\;0.1\;mgL^{-1}$ and $BA\;3\;mgL^{-1}$ treatment in E. laui and $NAA\;0.3\;mgL^{-1}$ in E. elegans. In addition, the number of shoots formation was 10.4 shoots high in $NAA\;1\;mgL^{-1}$ and $BA\;1\;mgL^{-1}$ treatment in E. laui and 12.0 shoots in most effective $NAA\;1\;mgL^{-1}$ and $BA\;0.1\;mgL^{-1}$ treatment in E. elegans. In the case of acclimatization of regenerated plant, growth characteristics did not show any significant difference (35 ~ 55%) shading with respect to the different ratio of substrate mixture, and it was determined that would be appropriate considered plant height and appearance preference of E. laui and E. elegans. It was established that the optimization of culture condition was responsible for the mass propagation in vitro cultures of E. laui and E. elegans.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.