Processing math: 100%
  • Title/Summary/Keyword: Shading

Search Result 1,106, Processing Time 0.03 seconds

Physiological Responses of Rhododendron mucronulatum and R. indicum with Shading Treatment in Autumn Season (가을철 차광 처리에 따른 진달래와 영산홍의 생리적 반응)

  • Lee, Kyung-Jae;Song, Ki-Sun;Chung, Young-Suk;Yoon, Taek-Seong;Hong, Sung-Kwon;Kim, Jae-Hyun;Lee, Sang-Woo;Kim, Jong-Jin
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.403-408
    • /
    • 2010
  • This study was carried out to investigate the physiological responses of Rhododendron mucronulatum Turcz. and R. indicum (L.) Sweet seedlings with 0%, 35%, 55% and 75% shading of full sunlight in polyethylene film house. The shading treatments were performed during the late growth season for each species (from Sept. 9 to Nov. 5, 2008). The shading treatment was effective in reducing the daily temperature by 0.9 to 1.7C during September and by 0.8 to 1.7C during October. Before the shading treatments, the water content of R. mucronulatum and R. indicum amounted to 68.5% and 66.3%, respectively. The water contents of two species after 75% shading treatment period decreased to 66.2% (3.4% reduction) and 65.9% (0.6% reduction), respectively. Notably, both species had a similar tendency indicating less reduction rate of water content with 75% shading. R. indicum showed higher photosynthetic capacity with higher level of shading, and its photosynthetic capacity reached the highest level (9.63μmolm2s1). On the other hand, shading-treated R. indicum showed higher intercellular CO2 concentration, stomatal conductance and transpiration rate (55% shading > 35% shading > 75% shading) than non-treated ones. In addition, non-treated seedlings showed higher water use efficiency than treated ones. In particular, it was found that the leaf color of R. mucronulatum turned equivalent to purple under full sunlight, while its leaf color kept equivalent more to green with higher level of shading, as evidenced even in naked eyes. According to comprehensive analysis using Munsell Color Chart on potential leaf color variations of R. mucronulatum depending on the level of shading, it was found that relatively many leaf colors under full sunlight were equivalent to R (red) and Y (yellow) chart, while relatively many leaf colors with higher level of shading were equivalent to G (green) and Y chart, where the latter still showed green color.

Shading Effect on the Content of Free Amino Acids, Minerals, and Fatty Acids in Tea Leaves(Camellia sinensis O. Kuntze) (차광정도(遮光程度)가 차엽(茶葉)의 아미노산(酸), 무기성분(無機成分), 지방산(脂肪酸) 함량(含量)에 미치는 영향(影響))

  • Park, Jang-Hyun;Choi, Hyeong Kuk;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.288-296
    • /
    • 1996
  • The effect of shading on the mineral components, free amino acid, and fatty acid content of tea shoot was examined under different shading conditions. The results are summarized as follows. The content of Total-Nitrogen and theanine in the tea leaves was the highest in the 95% shading as 5.49% and 15580 mg/kg, respectively, while they were the lowest in the unshading. The contents of total free acid were ranged from 24670 to 30210 mg/kg, showing higher content in the 95% shading than that in the unshading. The contents of ammonium nitrogen, potassium, and magnesium were higher in the all treatments of shading than that of unshading but vise versa in calcium content. The content of total fatty acid was the highest in the 55% + 95% shading as 27990 mg/kg, while that of unshading was the lowest as 24356 mg/kg showing the increasing order of C18:3, C18:2, C18:0, C18:1, C18:0. The quality of tea leaves was improved with the treatment of shading compared to that of unshading showing the best in the 95% shading.

  • PDF

Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil (봉의꼬리를 이용한 논토양의 비소정화에 미치는 차광처리의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • This study was conducted to analyse the effectiveness of shading on growth and arsenic absorption of Pteris multifida, known as hyperaccumulator of arsenic, from paddy soils contaminated with heavy metals. Study was carried out in paddy soil polluted by arsenic near the former Janghang smelter. P. multifuda in the same growth stage was planted with 20×20cm intervals in each experimental plot (2×2m), and cultivated for 24 weeks. The growth of P. multifuda according to shading conditions was evaluated, the accumulated amount of arsenic in plants and arsenic variation in the soil was analyzed using ICP. In the result of this study, the growth of P. multifida cultivated under shading treatment was vigorous than non-shading. Accumulated amount of arsenic in aerial parts of P. multifida cultivated under non-shading (169.8mgkg1) was slightly higher than shading (140.9mgkg1), and those in underground part were almost the same. But the growth was great in 70% shading treatment. Therefore, arsenic contents absorbed from soils was much higher in shading treatment. Arsenic translocation rate (TR) of P. multifida was very high (0.87~0.89) regardless of shading conditions. So arsenic in soil could be efficiently eliminated by removal of aerial parts.

An Experimental Study on the Reduction Effects of Shading Devices on Sky Radiant Cooling in Winter (차양장치의 겨울철 천공복사 냉각 저감 효과에 관한 실험적 연구)

  • Kim, Jin-Hee;Kim, Young-Tag;Lee, Soo-Yeol;Choi, Won-Ki
    • Land and Housing Review
    • /
    • v.12 no.1
    • /
    • pp.129-137
    • /
    • 2021
  • External shading devices are well known solar control devices that can help reduce the cooling load of commercial buildings. For this study, experiments were conducted to examine the feasibility of shading devices in reducing both the cooling and heating loads. The influence of sky radiant cooling during winter was verified for the external shading device, internal roller blind, and window. Results can be summarized as follows. The temperature difference between the inner and outer surfaces of the window with the external shading device was 11.8℃ compared to 14.6℃ for one without the external shading device. This 2.8℃ difference was due to heat exchange by sky radiation when the surface temperature of the shading device was lower than the ambient outdoor air temperature. The roller blind resulted in a lower temperature of 0.8℃ compared to the average temperature of the window's air cavity. This was due to heat exchange by sky radiation of the roller blind surfaces. Without shading devices, the outside surface temperature of the window is about 3℃ higher. The study also found that when external shading devices were installed on both the southwest and southeast sides, the outside surface temperature of the windows were lower on the southwest side than the southeast side.

Temperature Changes under Plastic Film Rain Shelter Using Different Concentration of Shading Paint in Vineyard (차광도포제 처리에 의한 포도 비가림 시설 하부 온도의 변화)

  • Jung, Sung Min;Hur, Youn Young;Im, Dong Jun;Chung, Kyung Ho
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2019
  • Shading paint (water-soluble) is one of the temperature control agents inside of a greenhouse in summer. Plastic film rain shelter is a unique system in Korean, prevents disease development vineyards, but it causes the heat inside a shelter in summer. Shading paint treatment with different shading rates (15, 25, and 35%) outside of plastic rain shelter avoided excessive heat inside. Shading paint influenced sunlight under plastic rain shelter in a different manner at each treatment. 35% of shading paint treatment reduced 45% of PPFD (Photosynthesis Photon Flux Density) than non-treatment control. Shading paint had the significance of efficiency to reduce the temperature under plastic rain shelter. 35% of shading paint treatment reduced 2C of bunch temperature than non-treatment control. However, shading paint treatment had not to control lower than ambient temperature. 35% of shading paint treatment is available to prevent excessive heat damage and poor fruit quality under plastic film rain shelter in summer in Korean vineyards.

Changes in Growth and Physiological Characteristics of Iris laevigata Fisch. by Shading Treatment (차광처리가 제비붓꽃의 생장 및 생리적 특성에 미치는 영향)

  • Seungju Jo;Dong-Hak Kim;Eun-Ju Cheong;Jung-Won Yoon
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • In this study, we investigated the growth and physiological responses of Iris laevigata Fisch. to shading treatments in order to suggest optimal light conditions for ex-situ conservation of the northern lineage plants. For this purpose, a control plant receiving full sunlight and different shading treatments (50%, 75%, 95%) were installed, and leaf mass per area, chlorophyll content and fluorescence response, and photosynthetic characteristics were investigated. I. laevigata developed leaves with higher photosynthetic efficiency to adapt to lower light intensity as shading levels increased. Chlorophyll content increased with increasing shading levels, and leaf mass per area decreased with increasing leaf area. The chlorophyll fluorescence responses Fv/Fm and NPQ did not change with shading, and the activity of the carbon fixation system did not differ between treatments. I. laevigata exhibited a light-saturation point equivalent to that of sun plants and maintained photosynthetic capacity similar to that of controls up to 75% shading. The apparent quantum yield of I. laevigata decreased significantly at 95% shading, indicating adaptation to lower light conditions. It seems that the photosynthetic capacity of I. laevigata decreases when grown under 95% shading level compared to full sunlight, and it is judged that the longer the light is restricted by continuous shading, the more unfavorable the growth will be.

Impact of Shading During Rooting Stage on Early Growth and High Temperature of Transplanted Rice (벼 이앙묘의 착근기 차광이 초기 생육과 고온에 미치는 영향)

  • Min-Ji Lee;Nam-Jin Chung;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.3
    • /
    • pp.145-153
    • /
    • 2024
  • Crop damage is becoming increasingly prevalent because of the impact of climate change-induced abnormal weather conditions. This is particularly evident in the delayed rooting of transplanted rice, caused by insufficient solar radiation. This delay in rooting negatively affects crop growth, resulting in reduced yield and delayed development. To investigate the effects of shading and elevated temperatures during rooting stage on the early growth of transplanted rice seedlings, seedlings that had been cultivated for 15 days were transplanted into a greenhouse and subjected to varying levels of shading, including 0%(control), 34%, 44%, and 70%. The height of transplanted seedlings increased under 34% shading but decreased under 44% or more shading compared to that of the no shading treatment. As the degree of shading increased, the stem diameter and root length of the seedlings decreased significantly inhibiting growth, dry matter weight, and seedling quality. Additionally, shading increases the nitrogen content of plants because of the absence of soluble carbohydrates, thereby weakening them. The adverse effects of shading on plant growth was further exacerbated by high temperatures. These findings suggest that inadequate, sunlight and elevated temperatures during rooting stage, subsequent to transplanting, may result in delay plant development and decreased resistance of the seedlings to pests and environmental challenges. Therefore, it is essential to develop innovative cultivation management techniques during the rooting stage to improve growth outcomes.

Effects of Shading Treatments on Photosynthetic rate and Growth in Codonopsis lanceloata Trautv. (차광처리가 더덕의 광합성율과 생육에 미치는 영향)

  • Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.152-156
    • /
    • 2007
  • The Condonopsis lanceolata Trautv. was planted in field to investigate the effect of afterwards shading in the condition of sun light of fifty six percent on the characteristics of photosynthesis according to leaf position at flowering stage. The vine length and leaf area were increased with shading treatment in comparison with that of non-shading. Dry weight of leaf and vine indicate opposite tendency with the result above. SLA (specific leaf area) was much more increased in shaded leaves than that obtained from non-shading treatment. The shaded leaves of plant show a higher SPAD value than that of non-shaded leaves. The net photosynthetic rate and stomatal conductance were increased as the PAR was increased. And it is the maximum valve (PAR of 700-1000 μmol/m2/s of PAR) of all leaves. Overnurse and light saturation point of the Condonopsis lanceolata Trautv. shading-treated was improved in comparison with control as net photosynthetic rates of leaves positioned on each part of the stem was increased.

Studies on the Photosynthesis of Korean Ginseng III. Effects of the Light Transparent Rate of Shading on the Photosynthesis Ability of Korean Ginseng Plant (Panax ginseng C. A. Meyer) (고려인삼엽의 광합성능력에 관한 연구 III. 투광율이 광합성 능력에 미치는 영향)

  • 조재성;원준연;목성균
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.408-415
    • /
    • 1986
  • This study was conducted to define the effects of light transparent rate of the shading on the photosynthesis ability of the ginseng leaves and their seasonal changes. Regardless the effects of light transparent rate of shading and age of ginseng plant, 10,000 lux was the most adequate light intensity for the maximum photosynthesis of ginseng leaves and seasonal difference was not significant. The ginseng plants which were grown under 10 to 15 percent light transparent shading showed the highest photosynthesis ability. The photosynthesis ability of ginseng leaves was significantly decreased in September than June and the decreasing rate was higher at the ginseng plants planted on back rows than front rows. In June, the ginseng plants grown under 10 to 15 percent light transparent shading showed high respiration amount but in September, those grown under 20 to 25% light transparent shading showed the highest respiration. The amount of chlorophyll of ginseng leaf was significantly decreased by increasing light transparent rate of shading.

  • PDF

Effect of Shading and Pinching on Growth and Acanthoside-D content of Acanthopanax divaricatus var. albeofructus and Acanthopanax koreanum Nakai (차광과 적심높이에 따른 흰털오갈피나무와 섬오갈피나무의 생육과 Acanthoside-D 함량 변화)

  • Lee, Jung Jong;Lee, Sang Hyun;Park, Jae Sang;Ahn, Young Sup;Lee, Sang Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • This study was conducted to identify the effect of shading and pinching on growth and acanthoside-D content of Acanthopanax divaricatus var. albeofructus and A. koreanum Nakai. Different pinching heights showed no significant differences in terms of plant growth and acanthoside-D content but higher values showed that pinching A. divaricatus at 60 cm and A. koreanum at 30 cm favored good growth and higher fresh weight in the shoots. The content of acanthoside-D was not significantly affected by pinching heights. Also, no significant difference in acanthoside-D content was found between the lower and upper part of plant in the first year. However it was much higher in the lower part than the upper part in the second year, which indicated that the content of acanthoside-D was comparatively high in the lower part where lignification is much advanced. Shading showed benefits in terms of growth of A. divaricatus while only 50%-shading was favorable for A. koreanum to achieve superior growth. Overall, results indicated that shading had favorably affected the growth of the 2 Acanthopanax species while no-shading is better if we opt to achieve higher acathoside D content.