• Title/Summary/Keyword: Sex steroid hormone

Search Result 85, Processing Time 0.026 seconds

Alteration in Concentrations of Blood Urea Nitrogen and Sex Steroid Hormone in Korean Cattle with Reproductive Disorders (번식 장애 한우의 혈액요소태질소 및 성 스테로이드 호르몬 농도 변화)

  • Choe, Chang-Yong;Son, Dong-Soo;Cho, Sang-Rae;Kim, Hyun-Jong;Choi, Sun-Ho;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • The objective of this study is to investigate the changes in concentrations of blood urea nitrogen (BUN) and sex steroid hormones, such as estrogen, progesterone, and testosterone in Korean cattle (Hanwoo) with reproductive disorders and to examine the relationship between BUN and body condition score (BCS) in Hanwoo. The concentration of BUN was 16.2 mg/dl, 17.8 mg/dl, 15.1 mg/dl, 17.9 mg/dl, and 28.3mg/dl in pregnancy, repeat breeding, follicular cyst, luteal cyst, and ovarian atrophy, respectively. In Hanwoo with BCS $2.0{\sim}2.9$, $3.0{\sim}3.5$ and $3.6{\sim}4.0$, the concentration of BUN was 15.8 mg/dl, 17.0 mg/dl, and 17.6 mg/dl, respectively. Fluoroimmunoassay showed that serum estrogen and progesterone levels were decreased in reproductive disorders Hanwoo, such as ovarian atrophy, endometritis, and weak estrus. The testosterone level was significantly decreased in Hanwoo with reproductive disorders compared to that in pregnant Hanwoo ($0.02{\sim}0.03\;ng/ml$ vs 0.13 ng/ml, p<0.05). The progesterone and estrogen concentrations in follicular fluid obtained from ovary with follicular cyst were significantly higher (p<0.05) than those in normal follicle fluid. These results show that there is no relationship between BUN and BCS in Hanwoo, and the concentration of sex steroid hormone in serum and follicular fluid are changed in reproductive disorders Hanwoo.

Characterization of ovarian culture in vitro and sex steroids in vivo by recombinant eel gonadotropin treatments in the eel Anguilla japonica

  • Kim, Dae-Geun;Kim, Jung-Hyun;Baek, Hea-Ja;Kim, Shin-Kwon;Min, Kwan-Sik;Kim, Dae-Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • In the present study, we investigated the effects of recombinant eel gonadotropins (rec-GTHs) on maturation induction in immature ovarian culture in vitro and sex steroid hormones in vivo in the Japanese eel Anguilla japonica. To study the in vitro effects of rec-GTHs on estradiol-17β (E2) production in immature ovarian tissues, ovarian tissues were incubated with different doses of rec-follicle-stimulating hormone (rec-FSH) or rec-luteinizing hormone (rec-LH). The results revealed that the E2 levels in the rec-FSH (0.1, 0.5, or 1 ㎍/mL)- and rec-LH (0.1 or 0.5 ㎍/mL)-treated groups were significantly higher than those in the female eels from the control group. Furthermore, to investigate the in vivo effects of rec-GTHs on the gonadosomatic index (GSI) and plasma sex steroid hormone levels, the eels were injected intraperitoneally with eel's ringer (control), salmon pituitary extract (SPE; for female eels), human chorionic gonadotropin (hCG; for male eels), rec-FSH, rec-LH, and rec-FSH + rec-LH once a week. The results revealed that except for the SPE and the hCG groups, none of the groups exhibited a significant difference in GSI values. However, in vivo plasma E2 levels increased at the end of 4 weeks after rec-FSH treatment in female eels. Based on these results, it is suggested that rec-GTHs may have a positive effect on sexual maturation in female eels; however, further studies on complementary rec-protein production systems and additional glycosylation of rec-hormones are needed to elucidate hormone bioactivity in vivo and in vitro.

Reproductive Cycle of a Rockfish, Sebastes schlegeli (조피볼락의 생식주기)

  • BAEK Jae-Min;HAN Chang-Hee;KIM Dae-Jung;PARK Chul-Won;Aida Katsumi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • To clarify the annual reproductive cycle in a rockfish, Sebastes schlegeli, monthly changes in gonadosomatic index (GSI), hepatosomatic index (HSI) and histological feature of gonads and plasma levels of sex steroid hormones ($estradiol-l7{\beta},\;17{\alpha},\;20{\beta}-dihydroxy-4-pregnen-3-one,\;testosterone\;and\;11-ketotestosterone$) were investigated. The annual reproductive cycle in females could be divided into 5 periods as follows: 1) recovery period (June to September): serum level of $estradiol-l7{\beta}$ increased gradually; 2) vitellogenesis period (Septemer to february) : vitellogenic oocytes were obsewed, GSI sustained high value, and serum level of $estradiol-l7{\beta}$ increased; 3) gestation period (February-April): developing larva showed in the ovary, and serum levels of $17{\alpha},\;20{\beta}-dihydroxy-4-pregnen-3-one$ and testosterone increased; 4) partrition period (April to May) : larva were delivered, and value of GSI and serum levels of hormones decreased rapidly; 5) resting period (May to June) : value of GSI and serum levels of $estradiol-l7{\beta}$ and testosterone remained low. The annual reproductive cycle in males could be divided into 6 periods; 1) early maturation period (April to June): value of GSI and serum levels of hormones incresed gradually, cyst of spermatogonia incresed in number, and a small number of cyst of spermatocyte was observed; 2) mid-maturation perid (June to September); value of GSI and serum levels of hormones increased, and germ cells in many cysts were undergoing active sperrnatogenesis; 3) late maturation period (September to November) : value of GSI and serum levels of hormones remained high and spermatozoa were released into the lumina of the seminal lobules; 3) spermatozoa dischaging period (Nobember to December) : the lumina of the seminal lobules were enlarged and filled with mature spermatozoa; 4) degeneration period (December to Februauy)i value of GSI decresed and cyst of spermatocyte were decresed in number; 5) resting period (December to April) : no histological changes of testes were observed, and value of GSI and serum levels of hormones remained low. In November, the lumina of the seminal lobules were filled with mature spermatozoa and sperm masses were present in the ovarian cavity. Thus, copulation in this species occurred in November and December.

  • PDF

Responsiveness of the Thoracic Aorta in Rats Treated with Dehydroepiandrosterone (DHEA) (Dehydroepiandrosterone(DHEA)의 투여에 의한 rat 흉대동맥의 반응성 변화)

  • 박관하
    • Biomolecules & Therapeutics
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2001
  • In order to determine the role of dehydroepiandrosterone (DHEA), the important sex-steroid hormone precursor, in vascular reactivity in rats, animals were treated for two weeks with DHEA or sex hormones, and the vascorelaxant and contractile responses of isolated aorta were examined. DHEA diminished the acetylcholine (ACh)-induced relaxation in female rats, while the drug was without effect in males. Testoterone lowered the vasorelaxant activity to ACh in either sex. 17$\beta$-Estradiol enhanced ACh-induced vasorelaxation in male rats, but this female sex hormone did not influence in females. In male rats, the androgen receptor antagonist flutamide also enhanced vasorelaxant action of ACh. When the male rat aorta was incubated in vitro with a nitric oxide (NO) synthase inhibitor L-NAME, phenylephrine-induced contraction was greatly potentiated in DHEA-pretreated rats compared to control ones. The present results suggest that DHEA stimulates mainly androgen in female, but both androgen and estrogen in male rats. The participation of NO In the modulation of vascular reactivity with pretreated DHEA was also considered.

  • PDF

Effects of Manchurian Trout Gonadotropins on Sexual Maturation in Female Rainbow Trout

  • Park, Woo-Dong;Ko, Hye-Yeon;Kim, Dae-Jung;Lee, Cheul-Ho;Sohn, Young-Chang
    • Journal of Aquaculture
    • /
    • v.20 no.3
    • /
    • pp.154-159
    • /
    • 2007
  • Manchurian trout (Brachymystax lenok) is an endangered fish species in East Asia including the Korean peninsula. To establish a method for artificial propagation and to improve our understanding of the reproduction in the species, we have produced recombinant gonadotropins, follicle-stimulating hormone (r-mtFSH) and luteinizing hormone (r-mtLH), which may play central roles in reproductive activities. In the present study, the biological activities of the recombinant hormones were analyzed by gonadosomatic index (GSI), ovarian follicle diameter, and sex steroid levels in mature rainbow trout (Oncorhynchus mykiss). In the 6th day post-injection, FSH-injected fish were slightly decreased in the GSI value, although there were no significant differences among those of control, r-mtFSH, and r-mtLH treatments. Injection of the r-mtFSH increased follicle diameters significantly as compared with those of control- and r-mtLH-injected fish. The plasma steroid levels showed wide differences in the groups at 1, 3, or 6th day post-injection. Despite the variable steroid levels, three individuals receiving either r-mtFSH or r-mtLH showed a great increase in a maturation-inducing steroid, $17{\alpha},20{beta}$-dihydroxy-4-pregnen-3-one, at 3 and 6 days. Taken together, these results suggest that biological efficacies of the recombinant FSH and LH should be further studied in the Manchurian trout.

Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube

  • Lee, E.J.;Bajracharya, P.;Jang, E.J.;Chang, J.S.;Lee, H.J.;Hong, S.K.;Choi, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.649-658
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are adult stem cells that activate and differentiate into myotubes. These stem cells are multipotent as they transdifferentiate into adipocyte-like cells, nerve cells and osteocytes. The effects of steroid hormones ($E_2$ and testosterone) were studied as a further step toward understanding the mechanism of MSCs proliferation and differentiation. In this study, MSCs were grown continuously for 87 days, implying that there may be a group of MSCs that continue to proliferate rather than undergoing differentiation. Isolated MSCs were cultured in Dulbecco's Modified Eagle's Medium supplemented with adult male, female or castrated bovine serum to observe the effect of steroid hormones on MSC proliferation. Cell proliferation was the highest in cultures supplemented with male serum followed by female and castrated serum. The positive effect of male hormone on MSC proliferation was confirmed by the observation of testosterone-mediated increased proliferation of cells cultured in medium supplemented with castrated serum. Furthermore, steroid hormone treatment of MSCs increased lipid accumulation in myotubes. Oil-Red-O staining showed that 17${\beta}$-estradiol ($E_2$) treatment avidly increased lipid accumulation, followed by $E_2$+testosterone and testosterone alone. To our knowledge, this is the first report of lipid accumulation in myotubes due to steroids in the absence of an adipogenic environment, and the effect of steroid hormones on cell proliferation using different types of adult bovine serum, a natural hormonal system. In conclusion, we found that sex steroids affect MSCs proliferation and differentiation, and lipid accumulation in myotubes.

Methoxychlor Produces Many Adverse Effects on Male Reproductive System, Kidney and Liver by Binding to Oestrogen Receptors

  • Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Methoxychlor (MXC) was developed to be a replacement for the banned pesticide DDT. HPTE [2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane], which is an in vivo metabolite of MXC, has strong oestrogenic and anti-androgenic effects. MXC and HPTE are thought to produce potentially adverse effects by acting through oestrogen and androgen receptors. Of the two, HPTE binds to sex-steroid receptors with greater affinity, and it inhibits testosterone biosynthesis in Leydig cells by inhibiting cholesterol side-chain cleavage enzyme activity and cholesterol utilisation. In a previous study, MXC was shown to induce Leydig cell apoptosis by decreasing testosterone concentrations. I focused on the effects of MXC on male mice that resulted from interactions with sex-steroid hormone receptors. Sex-steroid hormones affect other organs including the kidney and liver. Accordingly, I hypothesised that MXC can act through sex-steroid receptors to produce adverse effects on the testis, kidney and liver, and I designed our experiments to confirm the different effects of MXC exposure on the male reproductive system, kidney and liver. In these experiments, I used pre-pubescent ICR mice; the puberty period in ICR mice is from postnatal day (PND) 45 to PND60. I treated the experimental group with 0, 100, 200, 400 mg MXC/kg b.w. delivered by an intra-peritoneal injection with sesame oil used as vehicle for 4 weeks. At the end of the experiment, the mice were sacrificed under anaesthesia. The testes and accessory reproductive organs were collected, weighed and prepared for histological investigation. I performed a chemiluminescence immune assay to observe the serum levels of testosterone, LH and FSH. Blood biochemical determination was also performed to check for other effects. There were no significant differences in our histological observations or relative organ weights. Serum testosterone levels were decreased in a dose-dependent manner; a greater dose resulted in the production of less testosterone. Compared to the control group, testosterone concentrations differed in the 200 and 400 mg/kg dosage groups. In conclusion, I observed markedly negative effects of MXC exposure on testosterone concentrations in pre-pubescent male mice. From our biochemical determinations, I observed some changes that indicate renal and hepatic failure. Together, these data suggest that MXC produces adverse effects on the reproductive system, kidney and liver.

A Role of Unsaturated Fatty Acid in Animal Reproductive Cells and Biology

  • Hwangbo, Yong;Kim, Hwa-Young;Lee, Yu-Rim;Lee, Seung Tae;Lee, EunSong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.2
    • /
    • pp.15-22
    • /
    • 2016
  • As a one of unsaturated fatty acid, polyunsaturated fatty acids (PUFAs) have multiple actions: as precursor of prostaglandins (PGs), steroid hormone synthesis and energy production in animal reproduction. PUFAs, which include omega-3 (n-3) and omega-6 (n-6), are derived from the diet and changed by diet, species, breed and season. The plasma membrane of spermatozoa in mammals contain various PUFAs. These composition of PUFAs regulate the membrane fluidity and cause lipid peroxidation via generation of reactive oxygen species (ROS). Induced lipid peroxidation by ROS decreased viability and motility of spermatozoa, and it is reduced by addition of antioxidant and low concentration of PUFAs. Because oocytes of animal have a high lipid components, process of oocyte maturation and embryo development are influenced by PUFAs. In in vitro study, oocyte maturation, embryo development, intracellular cAMP and MAPK activity were increased by treatment of n-3 ${\alpha}$-linolenic acid (ALA) during maturation, whereas n-6 linoleic acid (LA) negatively influenced. Also, inhibition of fatty acid metabolism in oocyte influenced blastocyst formation of cattle. PGs are synthesized from PUFAs and various PUFAs influence PGs via regulation of PG-endoperoxide synthase (PTGS). Steroid hormone synthesis from cholesterol is regulated by expression of steroid acute regulator (StAR) protein and mRNA. Exogenous n-3 and n-6 PUFAs altered sex hormone in animal through stimulate or inhibit StAR activity. Because PUFAs altered PG and steroid hormone synthesis, follicular development was influenced by PUFAs. This effect of unsaturated fatty acid could provide information for improvement of reproductive ability in animals.

Relationship between Tamoxifen and Sex Steroid Hormones on Uterus and Implantation in Rat (흰쥐 자궁 및 착상에 있어서 Tamoxifen과 성스테로이드 호르몬의 상호관계)

  • Han, H.J;Yoo, K.Y.;Kwun, J.K.;Yang, I.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.15 no.2
    • /
    • pp.93-102
    • /
    • 1988
  • These studies were undertaken to examine the relationship between tamoxifen and sex steroid hormones in rat uterine morphology and the effect of tamoxifen on sex steroid hormone levels, implantation and myometrial contraction. The results obtained were as follows : 1) The increase in height of the luminal epithelium caused by tamoxifen treatment was blocked by progesterone. The increase in height of luminal epithelium caused by $estradiol-17{\beta}$ treatment was blocked by tamoxifen. 2) When a single dose of tamoxifen(10, 20, $40{\mu}g$) was given on Day 2 of pregnancy, implantation was prevented. Plasma $estradiol-17{\beta}$ level fell in a dose-dependent manner but plasma progesterone level was constant. 3) In vitro, tamoxifen decreased rat uterine contractility in a dose-dependent manner.

  • PDF