• Title/Summary/Keyword: Sewerage treatment

Search Result 82, Processing Time 0.026 seconds

Correlation analysis between TOC and organic matter indices in influent and effluent of public sewage treatment facilities (공공하수처리시설 유입수 및 방류수에서 TOC와 유기물질 관리지표간의 상관성 분석)

  • Son, Dong-Jin;Jeong, Dong-Hwan;Park, Kyoo-Hong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • As the total organic carbon (TOC) becomes a new water quality standard as an organic matter (OM) index for public sewage treatment facilities (PSTFs) in Korea from 2021, a comparison study needs to be conducted by examining the correlation between TOC and the existing OM indices (DOC, BOD5, CODMn, CODCr). 500 PSTFs were categorized by process configuration and capacity, and correlation between OM indices in influent and effluent was analyzed. The CODMn/TOC showed higher correlation than other OM indices. This results can be used to basic data for various research associated with TOC.

Evaluation on Applicability of the Real-time Prediction Model for Influent Characteristics in Full-scale Sewerage Treatment Plant (하수처리장 유입수 성상 실시간 예측모델 및 활용성 평가)

  • Kim, Youn-Kwon;Kim, Ji-Yeon;Han, In-Sun;Kim, Ju-Hwan;Chae, Soo-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1706-1709
    • /
    • 2010
  • Sewerage Treatment Plants(STPs) are complexes systems in which a range of physical, chemical and biological processes occur. Since Activated Sludge Model(ASM) No.1 was published, a number of new mathematical models for simulating biological processes have been developed. However, these models have disadvantages in cost and simplicity due to the laboriousness and tediousness of their procedures. One of the major difficulties of these mathematical model based tools is that the field-operators mostly don't have the time or the computer-science skills to handle there models, so it mainly remains on experts or special engineers. In order to solve these situations and help the field-operators, the $KM^2BM$(K-water & More-M Mass Balance Model) based on the dynamic-mass balance model was developed. This paper presents $KM^2BM$ as a simulation tools for STPs design and optimization. This model considers the most important microbial behavioral processes taking place in a STPs to maximize potential applicability without increasing neither model parameter estimation nor wastewater characterization efforts.

  • PDF

Water Quality Improvement Evaluation of Community Sewerage by using Advanced Sewage Treatment (고도하수처리공법을 적용한 마을 하수도의 수질개선 평가)

  • Choi, Han-Kuy;Ko, Jeong-Sup;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.57-64
    • /
    • 2012
  • In order to examine the tailorability of advanced sewage treatment of a separated sewer pipe, we observed the quality of leaked water in a reactor. A2C affiliation and MBR affiliation decreased by over 78% in cases of BOD, COD, and SS. SBR affiliation decreased by 79.1% in a case of T-N. Overall, the efficiency of T-N on the above affiliations was low. SS had the high efficiency in MBR affiliation. In the end, examination of water quality improvement showed that the quality was improved from 20% to 90%; hence, it is expected that this treatment can protect the water resources of the Hongcheon River and makes it easier to use the water of the river.

  • PDF

Effects of exposure intensity of sodium hydroxide on PVDF membrane performance (수산화나트륨의 노출 강도가 PVDF 분리막 성능에 미치는 영향)

  • Lee, Yong-Soo;Kang, Ha-Young;Kim, Woo-Ha;Lee, Chang-Kyu;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.453-460
    • /
    • 2018
  • The impact of sodium hydroxide, which is one of chemicals of clean in place (CIP) for removing membrane fouling, on the PVDF membrane is reviewed with respect to physical/chemical structural change, the permeability affected therefrom. Based on the cleaning concentration applied in membrane water treatment facilities, 10% of accumulated defluorination was confirmed up to 166g.hr/L which reflects the exposure time. However, membrane resistance was confirmed to be reduced by about 10%. Through FT-IR and EDS analysis, reduction of F and change of are confirmed as factors that affect the permeability of membrane. Membrane resistance, which affects permeability, is affected by loss of additives for hydrophilicity, rather than defluorination of PVDF material. Therefore, in order to check membrane degradation degree, an accelerated test by NaOH was carried out, loss of additives was confirmed, and then PVDF inherent characteristic was observed.

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology (하수기반역학을 적용한 공공하수처리시설 역할 재정립)

  • Park Yoonkyung;Yun Sang-Lean;Yoon Younghan;Kim Reeho;Nishimura Fumitake;Sturat L. Simpson;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.

A Study on the Applicability of ENERWATER for Evaluation of the Energy Consumption Label of WWTPs in Korea (국내 하수처리시설 에너지 등급 평가를 위한 ENERWATER의 적용 가능성에 관한 연구)

  • Park, Minoh;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.231-239
    • /
    • 2022
  • In this study, we applied ENERWATER to evaluate the energy consumption labeling of wastewater treatment plants in Korea using the Korea sewerage statistics data. The results showed that the energy label status was excellent in the SBR process for small and medium-scale wastewater treatment plants and the A2O process for large-scale wastewater treatment plants. The energy labeling of wastewater treatment plants of 50,000 tons capacity was excellent. The statuses of metropolitan cities and Jeollanam-do province were excellent. We analyzed the effects of renewable energy on wastewater treatment plants' energy consumption and found out that digestion gas for large-scale plants and photovoltaic energy for small-scale plants were effective in improving energy labeling. In addition, we compared the energy labels of four wastewater treatment plants in "Z" city and wastewater treatment plant "X" had the best energy label, and the wastewater treatment plants "V" and "Y" had to be selected as priorities for the energy diagnosis and improvement project. In a comprehensive conclusion, the applicability of ENERWATER was confirmed based on sewage statistics data and labeling can be used to set priorities for the energy diagnosis and improvement project.

A mini-review on microplastics in drinking water treatment processes (정수처리장 내의 미세플라스틱의 유입 및 처리기술 현황에 관한 고찰)

  • Choi, Byeonggyu;Kim, Jiyoon;Choi, Soohoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.357-371
    • /
    • 2020
  • Microplastics have become a rising issue in due to its detection in oceans, rivers, and tap water. Although a large number of studies have been conducted on the detection and quantification in various water bodies, the number of research conducted on the removal and treatment of microplastics are still comparatively low. In the current research, the inflow and removal of microplastics were investigated for various drinking water treatment plants around the world. Addition to the investigation of filed research, a survey was also conducted on the current research trend on microplastic removal for different treatment processes in the drinking water treatment plants. This includes the researches conducted on coagulation/flocculation, sedimentation, dissolved air flotation, sand filtration and disinfection processes. The survey indicated mechanisms of microplastic removal in each process followed by the removal characteristics under various conditions. Limitations of current researches were also mentioned, regarding the gap between the laboratory experimental conditions and field conditions of drinking water treatment plants. We hope that the current review will aid in the understanding of current research needs in the field of microplastic removal in drinking water treatment.

Reconstruction of North Korean Water Infrastructure: Present Status and Future Challenge (북한 상하수도 인프라 재구축: 현황과 전망)

  • Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.641-650
    • /
    • 2008
  • This paper reviews the infrastructure of the water supply and sewerage system in North Korea. North Korean has similar legal protection to preserve water environment that can be seen in Republic of Korea, but North Korean regulations seemed lack of detailed measures. The critical pollution problems of rivers and lakes in the northern part of peninsula is mainly due to the lack of sewage collection system and poor treatment works. It has been estimated that less than 20% of sewers are connected to the wastewater treatment plants. Although the availability of water resources seemed sufficient, North Koreans suffer the lack of the drinking water supply which needs an urgent attention. Based on the analysis, it has been suggested that the reconstruction of North Korean water and sewage infrastructure needs at least 17.5 trillion Korean Won.

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

Development of Biological Filtration Process for Effective Nitrogen Removal and its Control strategies in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거를 위한 운전제어법 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.230-237
    • /
    • 2006
  • The operational parameters and control strategies of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. Methanol addition was controlled based on the COD/N ratio or McCarty's equation. Constant COD/N ratio control results in excess addition under large diurnal fluctuation of $NOx^--N$, and McCarty's equation can be used to add appropriate amount of methanol. Control of methanol addition by on-line nitrate measurement, control of aeration by on-line DO measurement, and control of backwashing by head loss measurement are successfully operated. These results proved that this process prove the easy-maintenance and cost-effectively treatment is attainable.