• Title/Summary/Keyword: Sewer pipe

Search Result 149, Processing Time 0.027 seconds

Development of Lining-Board System Using Light-Weight GFRP Panels for Sewer-Pipe Construction (경량 GFRP 패널을 이용한 하수관거공사용 복공 가시설 시스템의 개발)

  • Park, Sin-Zeon;Hong, Kee-Jeung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2014
  • Recently, sewer-pipe constructions replacing deteriorated pipes are currently underway in the downtown area. To resolve many problems in the conventional method of open-cut construction, lining-board system using light-weight GFRP panels is developed. The pultruded GFRP panels can be successfully used for the developed lining-board system as temporary decks and retaining walls in virtue of light weight, high strength and high durability. In this paper, the structural safety and serviceability of the lining-board system are examined through FE analyses and experiments. Further more, a field application of the lining-board system is presented. The field application shows that quality and environment of construction can be significantly improved.

Application analysis of advanced sewage treatment on the separated sewer pipe (분류식 하수관거에서의 고도하수처리공법 적용성 해석)

  • Park, Soo-Jin;Ko, Jeong-Sup;Baek, Kyung-Won;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.772-777
    • /
    • 2012
  • In order to examine the tailorability of advanced sewage treatment of a separated sewer pipe, we observed the quality of leaked water in a reactor. A2C affiliation and MBR affiliation decreased by over 78% in cases of BOD, COD, and SS. SBR affiliation decreased by 79.1% in a case of T-N. Overall, the efficiency of T-N on the above affiliations was low. SS had the high efficiency in MBR affiliation. In the end, examination of water quality improvement showed that the quality was improved from 20% to 90%; hence, it is expected that this treatment can protect the water resources of the Hongcheon River and makes it easier to use the water of the river.

  • PDF

A Quantitative/Qualitative Study of Infiltration/Inflow for Order Decision of Sewer pipe Maintenance (하수관거보수 순위결정을 위한 침입수/유입수량에 대한 정량/정성 분석의 실행 연구)

  • Park, Myung-Gyun;Kim, Dae-Sung;Ahn, Won-Sik;Oh, Jeong-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • This study was carried out to obtain quantities of infiltration, inflow and exfiltration on sewer pipes of three areas at a small city. From the results, the most investigated sewer pipes should be infiltrated by underground water and undetermined water. Flowrate commonly showed two peak at 6 to 8 a.m. and 6 to 9 p.m. and which may be influenced by the sewer flowrate with washing or bathing time. BOD/TN ratio of below 4.0 were inferior as compared with proper criteria 5.1. Infiltration/inflow rates of three areas were 21.7% and $0.08m^3/km$ of A, 12.4% and $0.015m^3/km$ of B, 22.4% and $0.021m^3/km$ of C, respectively. This indicates that infiltration/inflow rate of A was obviously greater than that of B and C. Also, these results show that we can conduct sewer maintenance in good order as A, C and B zone.

Probability of Performance Failure and Change of Roughness Coefficient According to Accumulation of Debris in Storm Sewer (토사적체에 따른 우수관의 조도계수 변화와 성능불능확률)

  • Kwon, Hyuk-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.135-141
    • /
    • 2010
  • Reliability model which can calculate the probability of performance failure of storm sewer was developed considering change of roughness coefficient in this study. Roughness coefficient should be re-evaluated due to accumulations of debris in sewer pipe. Therefore, roughness coefficient according to depth of debris in circular sewer pipe was determined for the present study. Reliability analysis was performed with the new roughness coefficient. After the analysis, it was found that capacity of storm sewer can be significantly decreased and probability of performance failure of storm sewer can be significantly increased by increasing the depth of debris in storm sewer. In this study, reliability model was applied for the Daegu and Jeonju using new roughness coefficient which was determined according to accumulation of debris in circular storm sewer. It was observed that if the depth of debris is increased, roughness coefficient is increased simultaneously and probability of performance failure of storm sewer is significantly increased.

Design of Rigid Sewer Pipe by Bearing Capacity and Settlement (지지력과 침하량을 고려한 강성관용 하수관거 설계)

  • Kim, Seong-Kyum;Oh, Seung-Sik;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.137-143
    • /
    • 2020
  • This study proposes an improvement plan for the evaluation of the bearing capacity and settlement of sewer pipe bases for the improvement of design methods for determining pipe breakage. Under the same conditions, the safety of crushed stone foundation was the lowest. Concrete VR pipe and prefabricated plastic foundations were found to be safe at most excavation depths. The bearing capacity of a rigid pipe foundation was determined by the shape of the foundation, soil conditions, and groundwater, irrespective of the type of foundation. As the depth of the excavation increases, the settlement tends to decrease immediately, and as the diameter of the pipe increases, the settlement tends to increase immediately at the same depth. It is thus reasonable to consider the bearing capacity and the instant settlement amount to solve the problems caused by the settlement of a rigid sewer pipe.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Failure Risk Assessment of Reinforced Concrete Sewer Pipes on Joint-Related Defects (원심력철근콘크리트관의 결함에 따른 심각도 평가 -이음부 사례를 중심으로-)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.787-796
    • /
    • 2013
  • Sewer joint-related defect is one of the most common domestic sewer defects along with the lateral pipe problem. However, there are currently no criteria that precisely assess the joint-related sewer defects. Therefore, this study examined the joint-related sewer defects found in domestic circumstances, classified them according to the suggested defect code, and presented the examples of defect pictures. Each defect code was organized as the process of out of pipeline alignment (OPA) which shows the progress in deterioration. Each defect was classified into 5 grades depending on appropriate repair and rehabilitation method. The result of this study is expected to be useful for domestic CCTV inspectors to assess the sewer condition and helpful for managers to make a decision of repair and rehabilitation.

Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber (유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구)

  • Ji, Hyon Wook;Koo, Dan Daehyun;Yoo, Sung Soo;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

Analysis of Rainfall-Runoff Characteristics by Improvements to the Roughness Coefficient in a Storm Sewer System (우수관거 조도계수 개선에 따른 강우-유출 특성 분석)

  • Kim, Eung-Seok;Jo, Deok-Jun;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.282-286
    • /
    • 2017
  • Rapid industrialization and urbanization have resulted in an increase in impervious areas and an increase in runoff, therefore, this causes more flooding and damage in urban areas. This study has analyzed the effects of improvements to the roughness coefficient in storm sewer pipes on flood runoff and outflow through rainfall-runoff simulations. The simulations are implemented by three scenarios to evaluate effects of improvements to the roughness coefficient for the improved length ratio to the total length, diameters and mainlines of sewer pipes. The size and length of the sewer mains are large and long to effectively increase the flow rate to the outlet, secure the passage discharge capacity of the pipe and reduce the overflow. It is effective for flood reduction that the improvement to roughness coefficient is first conducted in mainlines with longer lengths and larger diameters. The results from this study can provide a guideline for prioritizing of the sewer pipe replacement.

A Study on Development of Level of Service (LoS) in Asset Management for Separated Sewer Pipe by Function Analysis Systems Technique (기능계통도를 활용한 분류식 하수관거의 자산관리 서비스수준의 성능측정방법 개선에 대한 연구)

  • Ha, Seung Ho;Kim, Seok;Cho, Namho;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.147-157
    • /
    • 2012
  • Recent studies on development of level of service (LoS) for separated sewer pipe have simply shown high-level of LoS from the perspective of users and financial/social/economical factors, which results in poor connectivity to real maintenance work. The objective of this study is to develope the evaluation indicators of level of service in the manner of function by analyzing the separated sewer pipes with FAST, function analysis systems technique, used in value engineering. The evaluation indicators suggested in this study include all the functions of separated sewer pipes and show an advantage of focused function maintenance. Moreover, developed indicators help to manage archival history and to perform asset management effectively.