• Title/Summary/Keyword: Sewage treatment water

Search Result 713, Processing Time 0.032 seconds

A Study on the Optimization of Anti-Jamming Trash Screen with Rake using by Response Surface Method (반응표면분석법을 이용한 제진기의 목메임 방지 개선 및 레이크 최적화)

  • Seon, Sang-Won;Yi, Won;Hong, Seok-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.230-236
    • /
    • 2020
  • A trash screen is installed in front of the inflow channel of a drainage pumping station, sewage treatment plant, and a power plant to block floating contaminants. The bottleneck phenomenon, which decreases the water inflow, causes damage to the damper as a result of clogging in between the screen if string type obstacles are not removed. In this paper, the apron was removed, and the screen was expanded, to prevent breakage of the bottleneck phenomenon and string type obstacles. This was designed using an extended rake by adding an inner rake in between the screen interspace to remove the bottleneck phenomenon and string type obstacles. To design the inner rake that satisfies the allowable stresses of the existing damper rake, the experiment points were determined according to the experimental design method using the inner rake vertical length and the thickness of the reinforced section as parameters. The use of the ANSYS static structural module and statistical analysis tool R software gives the optimized shape according to the response surface method. The relative error between the response surface analysis results and the simulation results was 1.63% of the determined optimal design-point rake length of 210.2 mm and the reinforcement section thickness of 2 mm. Through empirical experiments, a test rake was constructed to the actual size, and approximately 97% of the bottleneck phenomenon and string type obstacles could be removed.

Evaluation of the Development and Reduction Scheme under Implementation Plan of Total Maximum Daily Loads in the Jinwi Watershed (진위천 수계의 수질오염총량제 시행에 따른 지역개발과 삭감계획 평가)

  • Han, Mideok;Ahn, Ki Hong;Ryu, Jichul;Son, Jeeyong;Park, Bae Kyung;Kim, Young Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2014
  • The development and reduction scheme under implementation plan of TMDLs were performed in the Jinwi watershed including 8 cities (Gunpo, Yongin, Suwon, Anseong, Osan, Uiwang, Pyeongtaek and Hwaseong) since 2012. Progress of the annual development schemes was faster than the reduction schemes in most of the cities during the planning period. Main load reduction methods included establishment and enlargement of sewage treatment plants, resources of livestock excretions, and introduction of best management practices of non-point source pollution. Especially, reduction load using recycling and composting of livestock excretions comprised 34.1% of all reduction load. It is necessary to implement methodical development and reduction scheme for making of successful performance of TMDLs and water quality improvement in the Jinwi watershed.

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

Evaluating the Removal Efficiency of Organic Compounds and Nitrogen Depending on Loading Rate in Wastewater Treatment from Fisheries Processing Plant Using an Entrapped Mixed Microbial Cell Technique (미생물 강제포획기술을 이용한 수산물 가공공장 폐수처리에서 부하율에 따른 유기물 및 질소의 제거 효율성 평가)

  • Jeong Byung-Cheol;Chang Soo-Hyun;Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2006
  • In this study, the feasibility of simultaneous removal of organic materials and nitrogen in the waste-water from fisheries processing plant was evaluated using entrapped mixed microbial cell technique(EMMC) process. The experiment was performed using activated sludge from municipal sewage treatment plant which was immobilized with gel matrix by cellulose triacetate. It was found that the stable operation at the treatment system which is composed of anoxic and oxic tank, was possible when the organic and nitrogen loading rates were increased stepwise. The organic and nitrogen loading rates were applied from 0.65 to $1.72kgCOD/m^3/d$ and from 0.119 to $0.317kgT-N/m^3$ with four steps, respectively. The maximum nitrogen loading rate which could satisfy the regulated effluent standard of nitrogen concentration, was $0.3kgT-N/m^3/d$. The removal efficiency of total nitrogen was decreased apparently as increasing nitrogen loading rates, whereas the removal efficiency of ammonium nitrogen was effective at the all tested nitrogen loading rates. Therefore, it was concluded that nitrification was efficient at the system. Nitrate removal efficiency ranged from 98.62% to 99.51%, whereas the nitrification efficiency at the oxic tank ranged 94.0% to 96.9% at the tested loading rates. The removal efficiencies of chemical oxygen demand(COD) and those of total nitrogen at the entire system ranged from 94.2% to 96.6% and 73.4% to 83.4%, respectively.

  • PDF

A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry (감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구)

  • Cho, Yoonhae;Seol, Bitna;Min, Kyoung Ok;Kim, Wan Suk;Lee, Junbae;Lee, Soohyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • The radioactive iodine ($^{131}I$) presents in the environment through the excrete process of nuclear medicine patients. In the detecting of low level of $^{131}I$ in the public water, the counting uncertainty has an effect on the accuracy and reliability of detecting $^{131}I$ radioactivity concentration. In this study, the contribution of sample amount, radioactivity concentration and counting time to the uncertainty was investigated in the case of public water sample. Sampling points are public water and the effluents of a sewage treatment plant at Sapkyocheon stream, Geumgang river. In each point, 1, 10 and 20 L of liquid samples were collected and prepared by evaporation method. The HPGe (High Purity Germanium) detector was used to detect and analyze emitted gamma-ray from samples. The radioactivity concentration of $^{131}I$ were in the range of 0.03 to 1.8 Bq/L. The comparison of the counting uncertainty of the sample amount, 1 L sample is unable to verify the existence of the $^{131}I$ under 0.5 Bq/L radioactivity concentration. Considering the short half-life of $^{131}I$ (8.03 days), a method for measuring 1 L sample was used. However comparing the detecting and preparing time of 1, 10 L respectively, detecting 10 L sample would be an appropriate method to distinguish $^{131}I$ concentration in the public water.

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.

Feasibility Study on Double Path Capacitive Deionization Process for Advanced Wastewater Treatment (이단유로 축전식 탈염공정의 하수고도처리 적용가능성 평가)

  • Cha, Jaehwan;Shin, Kyung-Sook;Lee, Jung-Chul;Park, Seung-Kook;Park, Nam-Su;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.295-302
    • /
    • 2014
  • This study demonstrates a double-path CDI as an alternative of advanced wastewater treatment process. While the CDI typically consists of many pairs of electrodes connected in parallel, the new double-path CDI is designed to have series flow path by dividing the module into two stages. The CFD model showed that the double-path had uniform flow distribution with higher velocity and less dead zone compared with the single-path. However, the double-path was predicted to have higher pressure drop(0.7 bar) compared the single-path (0.4 bar). From the unit cell test, the highest TDS removal efficiencies of single- and double-path were up to 88% and 91%, respectively. The rate of increase in pressure drop with an increase of flow rate was higher in double-path than single-path. At 70 mL/min of flow rate, the pressure drop of double-path was 1.67 bar, which was two times higher than single-path. When the electrode spacing was increased from 100 to $200{\mu}m$, the pressure drop of double-path decreased from 1.67 to 0.87 bar, while there was little difference in TDS removal. When proto type double-path CDI was operated using sewage water, TDS, $NH_4{^+}$-N, $NO_3{^-}$-N and $PO_4{^{3-}}$-P removal efficiencies were up to 78%, 50%, 93% and 50%, respectively.

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons(PAHs) in Riverine Waters of Ulsan Coast, Korea (울산연안 하천에서 다환방향족탄화수소 분포특성)

  • You, Young-Seok;Lee, Jeong-Hoon;Park, Jeong-Chae;Kim, Dong-Myung;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.398-405
    • /
    • 2012
  • PAHs(Polycyclic Aromatic Hydrocarbons) in coastal area and estuary adjacent to urban area and industrial activities region are mainly introduced into marine environment via atmosphere and river. This study which is evaluated the distribution characteristics of PAHs discharge from rivers and sewage disposal water which flowing into Ulsan bay, and were carried out in Jun of dry season and in Auguest of wet season, 2008. The water samples from eight main rivers and Youngyeon WWTP(Wastewater Treatment Plant) flowed into Ulsan bay were taken for analysis of dissolved PAHs. The range and mean values of dissolved PAHs concentrations showed 10.30 to 87.88 ng/L, its mean 36.94 ng/L in dry season and 10.30 to 69.57 ng/L, its mean 24.37 ng/L in wet season. The distribution of dissolved PAHs showd the high concentrations in the Gungcheoncheon which is flowed from urban and industrial area. The ranges and means values of the loading fluxes were estimated with 0.04 to 8.27 g/day, its mean 2.05 g/day in dry season, and 0.03 to 4.77 g/day, its mean 1.61 g/day, in wet season. The loading flux showed the highest value in Taewha river due to the high flow rate and the urban activity. The composition patterns of dissolved PAHs compound showed most of the trend occupying low molecuar weight PAHs than high molecular weight PAHs. These results were due to physical and chemical characteristics of PAHs compound, and were similar to those of other studies. The concentrations of dissolved PAHs in this study are lower than those of other studies, and the level of PAHs pollution appeared to be not serious in reverine waters of Ulsan coast.

Nitrogen and Phosphorus Loss with Runoff and Leachate from Soils Applied with Different Agricultural By-product Composts (부산물 퇴비를 시용한 토양에서 표면유거와 용탈에 의한 질소와 인의 유실)

  • Park, Chol-Soo;Joo, Jin-Ho;Lee, Won-Jung;Yoo, Kyung-Yoal;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.307-312
    • /
    • 2005
  • Since alpine upland in Pyungchang-gun has been typically applied every two or three years with saprolite, agricultural by-products are inputted to raise soil properties. Therefore, the effect of saprolite application on water quality in runoff and leachate should be monitored. To investigate water quality in runoff and leachate with various treatments of agricultural by-product, lysimeter with dimension of $0.85m{\times}1.75m{\times}0.30m$ was installed in Kangwon National University. Control, mixed compost with cow, chicken and sawdust by-product (CCSC), chicken manure by-product compost (CC), food waste by-product compost (FWC), and beer sewage sludge by-product compost (BSSC) at the rate of $10Mg\;ha^{-1}$ were mixed with soil in 25 cm depth, and water qualities in runoff and leachate were monitored from Jun. 4, 2004 to Oct. 18, 2004. EC ($0.8-2.2dS\;m^{-1}$) and concentrations of total N ($25-75mg\;L^{-1}$) and total P ($0.12-0.43mg\;L^{-1}$) were highest in both runoff and leachate of CC treatment. EC values in CC and FWC treatments continuously increased during lysimeter experiment, while total N and total P concentrations continuously decreased. Average total N concentrations in runoff taken from CCSC, FWC and BSSC treatments were 41, 34 and $37mg\;L^{-1}$, and in leachate were 35, 28 and $34mg\;L^{-1}$, respectively. Average total P concentrations were not different with different treatments. EC values in leachate were higher than those in runoff, and total N concentrations in runoff were higher than those in leachate.