• 제목/요약/키워드: Severe accident management strategy

검색결과 22건 처리시간 0.019초

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

중대사고관리를 위한 훈련도구(TRAIN)의 개발 (Development of TRAIN for Accident Management)

  • Moo-Sung Jae
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.84-87
    • /
    • 2001
  • 중대사고관리는 원전의 노심손상사고를 예방하거나 완화시키기 위하여 기존의 가용자원이나 시스템, 운전의 행위를 사용하는 것을 말한다. 제어실이나 기술지원반을 위하여 중대사고관리를 위하여 개발된 TRAIN(Training pRogram for Accident Management Program In Nuclear Power Plant)의 초기문자로 명명된 시스템을 본 논문에 소개하였다. TRAIN은 중대사고현상 KB(Knowledge Base)와 사고시나리오 KB, 제어도와 함께 사고관리 절차도 그리고 필요정보로 구성되어있으며 제어실이나 기술지원반에게 중대사고의 현상지식을 취득하게 하고, 발전소의 취약특성을 파악하게 하며, 상당한 스트레스하에서 주어진 문제를 해결하게 하는데 본 연구의 결과는 기여할 것이다.

  • PDF

Time uncertainty analysis method for level 2 human reliability analysis of severe accident management strategies

  • Suh, Young A;Kim, Jaewhan;Park, Soo Yong
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.484-497
    • /
    • 2021
  • This paper proposes an extended time uncertainty analysis approach in Level 2 human reliability analysis (HRA) considering severe accident management (SAM) strategies. The method is a time-based model that classifies two time distribution functions-time required and time available-to calculate human failure probabilities from delayed action when implementing SAM strategies. The time required function can be obtained by the combination of four time factors: 1) time for diagnosis and decision by the technical support center (TSC) for a given strategy, 2) time for strategy implementation mainly by the local emergency response organization (ERO), 3) time to verify the effectiveness of the strategy and 4) time for portable equipment transport and installation. This function can vary depending on the given scenario and includes a summation of lognormal distributions and a choice regarding shifting the distribution. The time available function can be obtained via thermal-hydraulic code simulation (MAAP 5.03). The proposed approach was applied to assess SAM strategies that use portable equipment and safety depressurization system valves in a total loss of component cooling water event that could cause reactor vessel failure. The results from the proposed method are more realistic (i.e., not conservative) than other existing methods in evaluating SAM strategies involving the use of portable equipment.

A SE Approach to Assess The Success Window of In-Vessel Retention Strategy

  • Udrescu, Alexandra-Maria;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.27-37
    • /
    • 2020
  • The Fukushima Daiichi accident in 2011 revealed some vulnerabilities of existing Nuclear Power Plants (NPPs) under extended Station Blackout (SBO) accident conditions. One of the key Severe Accident Management (SAM) strategies developed post Fukushima accident is the In-Vessel Retention (IVR) Strategy which aims to retain the structural integrity of the Reactor Pressure Vessel (RPV). RELAP/SCDAPSIM/MOD3.4 is selected to predict the thermal-hydraulic response of APR1400 undergoing an extended SBO. To assess the effectiveness of the IVR strategy, it is essential to quantify the underlying uncertainties. In this work, both the epistemic and aleatory uncertainties are considered to identify the success window of the IVR strategy. A set of in-vessel relevant phenomena were identified based on Phenomena Identification and Ranking Tables (PIRT) developed for severe accidents and propagated through the thermal-hydraulic model using Wilk's sampling method. For this work, a Systems Engineering (SE) approach is applied to facilitate the development process of assessing the reliability and robustness of the APR1400 IVR strategy. Specifically, the Kossiakoff SE method is used to identify the requirements, functions and physical architecture, and to develop a design verification and validation plan. Using the SE approach provides a systematic tool to successfully achieve the research goal by linking each requirement to a verification or validation test with predefined success criteria at each stage of the model development. The developed model identified the conditions necessary for successful implementation of the IVR strategy which maintains the vessel integrity and prevents a melt-through.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

EVALUATION OF AN ACCIDENT MANAGEMENT STRATEGY OF EMERGENCY WATER INJECTION USING FIRE ENGINES IN A TYPICAL PRESSURIZED WATER REACTOR

  • PARK, SOO-YONG;AHN, KWANG-IL
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.719-728
    • /
    • 2015
  • Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.