• Title/Summary/Keyword: Settling Column Test

Search Result 14, Processing Time 0.02 seconds

Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration (Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링)

  • Ahn, Hyo-Won;Park, No-Suk;Lee, Sun-Ju;Lee, Kyung-Hyuk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

A novel laboratory method for measuring the hydraulic conductivity of dredged slurry with high water contents

  • Cong Mou;Jian-wen Ding;Jian-hua Wang;Xing Wan
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.317-326
    • /
    • 2023
  • Accurately measuring the hydraulic conductivity of dredged slurry (HCODS) is a difficult task and usually requires highly developed experimental techniques. To resolve such problem, this paper presents a novel laboratory method, where a double drainage sedimentation test (DDST) is proposed to generate a downward seepage after the end of primary consolidation (EOP). Based on the established stress equilibrium equations, it is figured out that the determination of local hydraulic gradients requires the effective stress distribution to be measured. Accordingly, an additional single drainage sedimentation test (SDST) with the same initial water content is performed in the novel laboratory method, which can be utilized to establish the relationship between effective stress and water content for investigated slurry. Thus, HCODS can be determined via a pair of SDST and DDST, with the water contents after the EOP measured. The corresponding calculation procedure is given in details. With a simply-designed settling column, the hydraulic conductivity tests were performed on three types of dredged slurry. The results demonstrated the effectiveness of the novel laboratory method in measuring HCODS.

An Experimental Study on Sedimentation-Consolidation Characteristics for Marine Clay in Korea (국내 해성점토의 침강압밀특성에 관한 실험적 연구)

  • Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.89-98
    • /
    • 2009
  • In this research, settling tests with marine clays in Korea and extensive literature review were performed to investigate the characteristics of sedimentation and consolidation so that their behaviors during dredging and reclamating could be evaluated. Design parameters related to Yano's method (1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation, were analyzed and their proprieties were reassessed. For samples from four different sites of south and west coasts in Korea respectively, settling tests with 1m height of columns were carried out, changing initial water content and height of sample in order to evaluate settling and consolidation characteristics of them from analyzing test results. More reliable regression curves than values from literature review were obtained as analyzing test results of estimating coefficient of sedimentation/ consolidation and initial setting velocity with changing initial water content. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally, for marine clays of south and west coasts of Korea, ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed. On the other hand, comparisons of characteristics of sedimentation and consolidation between marine clays from south coast and them from west coast were also performed.

  • PDF

Dewatering Filtrate Treatment with Center Well Depth of Secondary Clarifier in Small Sewage Treatment Plant (소규모하수처리시설의 이차침전조 내통길이 변화를 통한 탈수여액의 처리)

  • Choi, Jung-Su;Kim, Hyun-Gu;Lee, Dong-Ho;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.694-702
    • /
    • 2013
  • The purpose of this study is to evaluate a de-watering filtrate treatment and the possibility of securing biological treatment capacity by changing the structure of the secondary clarifier. Accordingly, the column test was conducted to determine the effect of polymer in the de-watering filtrate on sludge sedimentation. Also, the characteristics of de-watering filtrate processing was evaluated through batch test and continuous processing operation. The results showed that sludge settling velocity increased with higher polymer concentration, and that effluent SS concentration was found to decrease. Regarding processing characteristics of de-watering filtrate, the removal efficiency of TSS and TBOD5 increased as the length of secondary clarifier was longer. Also, comparing injections into anoxic tank and secondary clarifier, de-watering filtrate by continuous infusion treatment process showed stability in both conditions. Therefore, by modifying the structure of secondary clarifier, efficient processing of de-watering filtrate is expected to be possible and processing capacity of small sewage treatment plants is considered to be improved.