• Title/Summary/Keyword: Setpoint temperature

Search Result 35, Processing Time 0.039 seconds

A Research on Optimization of Lead-lag Controller Setpoint for Rod control system to prevent fluctuation for NPP (원전 제어봉제어계통 순시변동을 방지하기위한 지상-지연회로 설정치 최적화 연구)

  • Yoon, Duk-Joo;Lee, Jae-Yong;Kim, In-Hwan;Kim, Joo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1154
    • /
    • 2007
  • Fluctuation of control rod was experienced when plant was operating in normal operation mode in WH type NPPs. In order to cope with increased control rod fluctuation, the lead-lag controller setpoint for rod control system was optimized and resulted in increasing the margin of operation and minimizing unnecessary control rod movement. By optimization of the time constant, the margin of operation was increased by $1.5^{\circ}F$ and the control rod movement was not occurred due to mitigation of temperature fluctuation in loop. According to the mitigation of time constant, the margin of operation was increased but safety margin can be affected badly, so that the influences to FSAR design reference was evaluated. As the result of this evaluation, it satisfied the design reference of the existing safety analysis and was applied to NPP after obtaining the approval.

  • PDF

The level control of steam generator in nuclear power plant by neural network 2-DOF PID controller (신경망 2-자유도 PID제어기를 이용한 원자력 발전소용 증기 발생기 수위제어)

  • Kim, Dong-Hwa;Lee, Won-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.321-328
    • /
    • 1998
  • When we control the level of the steam generator in the nuclear power plants, a swell and shrink arises from many disturbances such as feed water rate, feed water temperature, main steam flow rate, and coolant temperature. If we use the conventional type of PI controller in this system, we will not have stability during controlling at lower power, the removal function of disturbances, and a load follow-up control effectively. In this paper, we study the application of a 2-Degree of Freedom(2-DOF) PID controller to the level control of the steam. generator of nuclear power plants through the simulation and the experimental steam generator. We use the parameters $\alpha$, $\beta$, $\gamma$ of the 2-DOF PID controller for the removal of disturbances and the parameters Kp,Ti,Td of the conventional type of PID controller for controlling setpoint. The back-propagation learning algorithm of neural network is used for tuning the 2-DOF PID controller. We can find satisfactory results of the removal of the disturbances and the tracking function in the change of setpoint through the simulation and experimental steam generator.

  • PDF

Analysis and Comparison of Standard and Existed Heating Degree-Hours Model for decision of Greenhouse Heating Load in Korea (온실의 난방부하 결정을 위한 Degree-Hour 모델식 비교 분석)

  • Woo, Young-Hoe
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.143-154
    • /
    • 2004
  • The value of daily heating degree hour(described as DH hereafter) is essential for calculating the heating load of a greenhouse during the winter months. Many researchers have so for proposed different models for estimating DH value. Models for estimating DH have been investigated DH(unit, ℃·h·year-1) in this paper. The comparisons of standard and existed DH values were made to know the estimation error of each model proposed so far. The standard DH values and other proposed DH values have were obtained for the inside setpoint temperatures of 9, 13, 16 and 20℃ in greenhouse, estimated based on meterological data from 1961 to 2000 according to locals, and standard DH values were independent and existed DH values were dependent. Among the various model, the one developed theoretically by Mihara modified to author was the best fitting for standard DH values. The DH values were obtained for the inside setpoint temperature of 9, 13, 16 and 20℃ by Modified Mihara's model. A new DH contour line graph was proposed using Modified Mihara's model. Using the DH contour line graph, the DH values can be obtained easily for any setpoint according to local.

Optimization of Dynamic Terms in Core Overtemperature Delta-T Trip Function (노심 과온도 Delta-T 보호식의 동적보정함수 최적화)

  • Park, Jin-Ho;Yoon, Han-Young;Kim, Hee-Cheol;Lee, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.236-242
    • /
    • 1992
  • The characteristics of dynamic terms in the core overtemperature Delta-T trip function are investigated for various time constants and the effects on the trip setpoint are studied for the uncontrolled RCCA bank withdrawal at power event by using the NLOOP and the PUMA code. Based on this study, a procedure determining the optimal dynamic term is suggested and accordingly the optimum time constants are determined for the KORI 3&4 transition core. It reveals that the vessel average temperature-lead-lag term is the most sensitive in DNB trip setpoint and the optimized time constants are 21 seconds for lead and 4 seconds for lag.

  • PDF

Optimal Oil Temperature at the Main Transformer Cooling System (주변압기 냉각시스템의 최적오일온도)

  • Han, Do-Young;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.955-960
    • /
    • 2009
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. Mathematical models of a main transformer cooling system were developed. These include models for the main transformer, the oil pump, the oil cooler, and the blower. The optimal oil temperature algorithm was also developed. This consists of the optimal setpoint algorithm and the control algorithm. A simulation program was developed by using mathematical models and the optimal oil temperature algorithm. Simulation results showed that the dynamic behavior of a main transformer cooling system was predicted well by mathematical models and a main transformer cooling system was controlled effectively by the optimal oil temperature algorithm.

  • PDF

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

Analysis of the Outdoor Design Conditions for Greenhouse Heating and Cooling Systems in Korea (온실의 냉난방시스템 설계용 외부기상조건 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to set the outdoor weather conditions to be applied to the design standard of the greenhouse heating and cooling system, outdoor air temperature and heating degree-hour for heating design, dry bulb temperature, wet bulb temperature and solar irradiance for cooling design were analyzed and presented. For every region in Korea, we used thirty years from 1981 to 2010 hourly weather data for analysis, which is the current standard of climatological normal provided by KMA. Since the use of standard weather data is limited, design weather conditions were obtained using the entire weather data for 30 years, and the average value of the entire data period was presented as a design standard. The design weather data with exceedance probability of 1, 2.5, and 5% were analyzed by the TAC method, and we presented the distribution map with exceedance probability of 1% for heating and 2.5% for cooling which are recommended by design standards. The changes of maximum heating load, seasonal heating load and maximum cooling load were examined by regions, exceedance probabilities, and setpoint temperatures. The proposed outdoor design conditions can be used not only directly for the greenhouse heating and cooling design, but also for the reinforcement of heating and cooling facilities and the establishment of energy saving measures. Recently, due to the climate change, sweltering heat in summer and abnormal temperature in winter are occurring frequently, so we need to analyze weather data periodically and revise the design standard at least every 10 years cycle.