• 제목/요약/키워드: Sessile drop

검색결과 40건 처리시간 0.033초

용융금속에 의한 Ceramic Oxides에서의 Wetting에 관한 연구 (A Stydy on the Wetting of Ceramic Oxides by Molten Metal)

  • 이석권;임응극;김환
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.289-296
    • /
    • 1983
  • The Wetting of fusion cast $Al_2O_3$ brick and $Al_2O_3 -ZrO_2$ brick by liquid Ag was studied by the sessile drop technique in Ar atmosphere. In this experiment the specimens were photographed per 2$0^{\circ}C$with increasing temperature from 96$0^{\circ}C$ melting point of Ag. And the method of photographing was carried out by shadow technique. The cosine of the contact angle increased linearly with increasing temperature in both systems. And the relation between the cosine of the contact angle and the temperature was Cos$\theta$=1.132+$0.75{\times}10^{-3}T$ for $Al_2O_3$ brick and Cos$\theta$=-1.706+$1.125{\times}10^{-3}T$ for $Al_2O_3 -ZrO_2$ brick In both systems the contact angle decreased as the surface of substrate became smoother. The work of adhesion which was 503.5ergs/$cm^2$ for $Al_2O_3$brick and 393.6 ergs/cm2 for $Al_2O_3 -ZrO_2$ brick at 96$0^{\circ}C$ increased parabolically with increasing temperature in both system.

  • PDF

Morphological study of synthesized PVDF membrane using different non-solvents for coagulation

  • Yadav, Meenakshi;Upadhyay, Sushant;Singh, Kailash;Chaturvedi, Tarun Kumar;Vashishtha, Manish
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.173-181
    • /
    • 2022
  • Polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes were prepared using 16 wt% PVDF in Dimethyl acetamide (DMAc) by phase inversion technique for desalination application using Membrane Distillation (MD). In this work, the effect of coagulation mediums such as ethanol and water as well their synergistic behavior on the fabricated PVDF membrane morphology was studied using SEM. Moreover, other characteristics required for the membrane distillation applications namely porosity, hydrophobicity and tensile strength were measured using the gravimetric method, sessile drop method and universal testing machine respectively. It was observed that the membrane morphology paradigm shifted from the finger-like structure to the sponge-like structure on increasing the ethanol concentration in coagulant. The porosity of the fabricated membrane was under the required MD range and found to be 57.3% at 16 weight % of PVDF in DMAc solvent under a pure ethanol coagulant bath. Moreover, the top surface contact angle ranges from 85° to 115° on increasing the bath concentration from CBC 0 to CBC 100 at 16 weight % of PVDF in DMAc solvent.

Impact of coffee ring effect on the $Al_2O_3$ thick films by Using Inkjet Printing Process

  • Hwang, Myung-Sung;Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.171-171
    • /
    • 2009
  • We have investigated the impact of coffee ring effect on the inkjet-printed $Al_2O_3$ thick films. In a single solvent system such as Dimethylformamide, the coffee-ring-pattern has appeared on the edge of sessile drop after evaporation. The peak-to-valley height difference in $Al_2O_3$ coffee ring is over 2um. This non-uniform deposition of $Al_2O_3$ over the surface leads to sever surface roughness of the inkjet-printed films. However, we have manipulated our printing parameters to improve the surface roughness and the packing density of the printed $Al_2O_3$ films. Our inkjet-printed $Al_2O_3$ films show 10 times smoother surface than the initially printed sample's surface. Also the packing density of the printed Ah03 film becomes 70% of high packed $Al_2O_3$. In this presentation, we would like to present the key process parameters of the inkjet printing process to overcome the genetic coffee ring problem.

  • PDF

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo;Pozzer, Leandro;Cavalieri-Pereira, Lucas;De Moraes, Paulo Hemerson;Olate, Sergio;De Albergaria Barbosa, Jose Ricardo
    • Journal of Periodontal and Implant Science
    • /
    • 제42권6호
    • /
    • pp.217-223
    • /
    • 2012
  • Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성 (Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer)

  • 이종훈;김선혜;조두호;김세창;백승국;이종구;강준모;최재붕;석창성;김문기;구자춘;임병수
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

정적법을 이용한 Mg-Al계 합금과 순수 Ti의 고온 젖음현상 및 Al계면에서의 정합성에 미치는 영향 (Effects of Mg-Al Alloy and Pure Ti on High Temperature Wetting and Coherency on Al Interface Using the Sessile Drop Method)

  • 한창석;김우석
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.38-42
    • /
    • 2021
  • In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.

도재 전용액이 지르코니아 코어-도재 비니어의 전단결합강도에 미치는 영향 (Effect of modeling liquid on the shear-bond strength of zirconia core - porcelain veneer)

  • 최병환;김임선
    • 대한치과기공학회지
    • /
    • 제36권2호
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: This study is to evaluate the effect of modeling liquid on the shear-bond strength between zirconia core and veneering ceramic. Methods: Disk-shaped (diameter: 12.0mm; height: 3.0mm) zirconia were randomly divided into six groups according to the surface conditioning method and whether modeling liquid is used or not to be applied (N=60, n=10 per group): group 1-control group with distilled water(ZD); group 2-control group with modeling liquid(ZM); group 3-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$(AD) with distilled water; group 4-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$ with modeling liquid(AM); group 5-liner with distilled water(LD); group $6{\pounds}{\neq}liner$ with modeling liquid(LM). Contact angles were determined by the sessile drop method at room temperature using a contact angle measurement apparatus. The specimens were prepared using dentin veneering ceramics, veneered, 3mm high and 2.8mm in diameter, over the cores. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50mm/min until failure. The fractured zirconia surfaces were evaluated by using stereomicroscope (${\times}30$). Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: ZD showed the highest contact angle($50.6{\pm}5.4^{\circ}$) and LD showed the lowest value($6.7{\pm}1.3^{\circ}$). Control groups and zirconia liner groups were significantly higher contact angle than liner groups(p<0.05). LD was the highest shear bond strength($43.9{\pm}3.8MPa$) and ZD was the lowest shear bond strength($24.8{\pm}4.9MPa$). Shear bond strengths of control groups and contact angle of liner groups were not significantly different((p>0.05). Liner groups presented adhesive failures. The others groups showed cohesive and adhesive failures. Conclusion: Modeling liquid groups showed lower contact angles and lower shear bond strength compared to those of distilled water groups.

The Influence of Plasma Surface Modification on Frictional Property of Natural Rubber Vulcanizates

  • Nah, C.;Kim, D.H.;Mathew, G.;Jeon, D.J.;Jurkowski, B.;Jurkowska, B.
    • Elastomers and Composites
    • /
    • 제39권1호
    • /
    • pp.12-22
    • /
    • 2004
  • 라디오 주파수(13.56 MHz) 무전극 종형 플라즈마 반응기를 이용하여 천연고무 가교체의 표면을 클로로디플루오로메탄으로 처리하였다. FT-적외선 분광분석으로 표면개질 정도를 정성적으로 조사하였다. 플라즈마 처리표면의 마찰힘은 플라즈마 처리시간 증가에 따라 감소하였다. 고무표면에 에틸렌글리콜과 물을 떨어뜨려 접촉각을 측정한 결과 플라즈마 처리에 따라 감소하는 것으로 미루어 플라즈마 개질에 따라 표면극성이 증가하는 것을 확인하였다. 유리판 표면을 동일조건으로 플라즈마 처리한 경우는 극성의 감소만이 확인되었다. 표면자유에너지의 London 비극성 및 극성요소를 계산하는데 있어서 기하평균법과 조화평균법이 유용한 것으로 확인되었다. 평균방법에 관계없이 플라즈마 처리시간이 증가함에 따라 표면자유에너지는 증가하였다 그러나 조화평균법으로 계산된 자유에너지가 기하평균법으로 계산된 값에 비해 상대적으로 높았다. 플라즈마 표면개질은 마찰의 계면, 히스테리시스, 점성요소들에 영향을 미침으로써 마찰계수를 변화시키는 것으로 나타났다.

DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향 (A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends)

  • 박수진;이화영;한미정;홍성권
    • 접착 및 계면
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 본 연구에서는 이관능성 에폭시와 PMR-15 블렌드계의 접촉각 측정과 파괴인성 측정을 통하여 PMR-15 조성비에 따른 표면자유에너지가 기계적 계면특성에 미치는 영향에 대하여 고찰하였다. 블렌드계의 FT-IR 분석 결과, PMR-15의 이미드화에 따른 특성 밴드가 1,722, $1,778cm^{-1}$ (C=O)와 $1,372cm^{-1}$ (C-N)에서 나타났고, 에폭시의 개환 반응에 따른 -OH peak는 PMR-15 phr의 함량에서 가장 크게 나타나는 것을 확인할 수 있었다. 증류수와 diiodomethane을 젖음액으로 사용하여 sessile drop 방법으로 접촉각을 측정한 결과, 표면자유에너지는 극성 요소의 증가에 의해서 PMR-15의 함량이 10 phr일 때 최고값을 나타내었다. 또한, 기계적 계면특성을 파괴인성 측정을 통하여 알아본 결과 $K_{IC}$$G_{IC}$ 또한 표면자유에너지와 유사한 경향을 나타내는 것을 알 수 있었는데, 이는 PMR-15 10 phr의 조성에서 수소결합의 증가에 의한 블렌드계의 극성요소가 증가함에 따라 분자들간의 계면결합력이 증가했기 때문인 것으로 관찰된다.

  • PDF