Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.4.173

Morphological study of synthesized PVDF membrane using different non-solvents for coagulation  

Yadav, Meenakshi (Department of Chemical Engineering, Malaviya National Institute of Technology)
Upadhyay, Sushant (Department of Chemical Engineering, Malaviya National Institute of Technology)
Singh, Kailash (Department of Chemical Engineering, Malaviya National Institute of Technology)
Chaturvedi, Tarun Kumar (Department of Chemical Engineering, Malaviya National Institute of Technology)
Vashishtha, Manish (Department of Chemical Engineering, Malaviya National Institute of Technology)
Publication Information
Membrane and Water Treatment / v.13, no.4, 2022 , pp. 173-181 More about this Journal
Abstract
Polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes were prepared using 16 wt% PVDF in Dimethyl acetamide (DMAc) by phase inversion technique for desalination application using Membrane Distillation (MD). In this work, the effect of coagulation mediums such as ethanol and water as well their synergistic behavior on the fabricated PVDF membrane morphology was studied using SEM. Moreover, other characteristics required for the membrane distillation applications namely porosity, hydrophobicity and tensile strength were measured using the gravimetric method, sessile drop method and universal testing machine respectively. It was observed that the membrane morphology paradigm shifted from the finger-like structure to the sponge-like structure on increasing the ethanol concentration in coagulant. The porosity of the fabricated membrane was under the required MD range and found to be 57.3% at 16 weight % of PVDF in DMAc solvent under a pure ethanol coagulant bath. Moreover, the top surface contact angle ranges from 85° to 115° on increasing the bath concentration from CBC 0 to CBC 100 at 16 weight % of PVDF in DMAc solvent.
Keywords
polymers; membrane distillation; membrane property; membrane fabrication;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sui, Y., Wang, Z., Gao, X. and Gao, C. (2012), "Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations", J. Membr. Sci., 413-414, 38-47. https://doi.org/10.1016/j.memsci.2012.03.055.   DOI
2 Sukitpaneenit, P. and Chung, T.S. (2009), "Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology", J. Membr. Sci., 340(1-2), 192-205. https://doi.org/10.1016/j.memsci.2009.05.029.   DOI
3 Tibi, F., Charfi, A., Cho, J. and Kim, J. (2020), "Fabrication of polymeric membranes for membrane distillation process and application for wastewater treatment: Critical review", Proc. Safe. Environ. Protect., 141, 190-201. https://doi.org/10.1016/j.psep.2020.05.026.   DOI
4 Xu, K., Cai, Y., Tavajohi, N., Cheng, Y., Li, X. and Wang, X. (2019), "ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation", Desalination, 456, 13-22. https://doi.org/10.1016/j.desal.2019.01.004.   DOI
5 Upadhyaya, S., Singh, K., Chaurasia, S.P., Dohare, R.K. and Agarwal, M. (2016), "Mathematical and CFD modeling of vacuum membrane distillation for desalination", Desalin. Water Treat., 57(26), 11956-11971. https://doi.org/10.1080/19443994.2015.1048306a.   DOI
6 Zhang, J., Li, J. and Gray, S. (2011), "Effect of applied pressure on performance of PTFE membrane in DCMD", J. Membr. Sci., 369(1-2), 514-525. https://doi.org/10.1016/j.memsci.2010.12.033.   DOI
7 Abdel-karim, A., Leaper, S., Alberto, M., Vijayaraghavan, A., Fan, X., Holmes, S.M., Souaya, E.R., Badawy, M.I. and Gorgojo, P. (2018), "High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultra filtration applications", Chem. Eng. J., 334, 789-799. https://doi.org/10.1016/j.cej.2017.10.069.   DOI
8 Deshmukh, S.P. and Li, K. (1998), "Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes", J. Membr. Sci., 150(1), 75-85. https://doi.org/10.1016/S0376-7388(98)00196-3.   DOI
9 Baghel, R., Upadhyaya, S., Singh, K. and Chaurasia, S.P. (2017), "A review on membrane applications and transport mechanisms in vacuum membrane distillation", Rev. Chem. Eng., 34(1), 73-106. https://doi.org/10.1515/revce-2016-0050.   DOI
10 Essalhi, M. and Khayet, M. (2012), "Surface segregation of fluorinated modifying macromolecule for hydrophobic/ hydrophilic membrane preparation and application in air gap and direct contact membrane distillation", J. Membr. Sci., 417-418, 163-173, https://doi.org/10.1016/j.memsci.2012.06.028.   DOI
11 Chang, H.H., Tsai, C.H., Wei, H.C. and Cheng, L.P. (2014), "Effect of structure of PVDF membranes on the performance of membrane distillation", Membr. Water Treat., 5(1), 41-56. https://doi.org/10.12989/MWT.2014.5.1.041   DOI
12 Tae, J., Kim, J.F., Hyun, H., Drioli, E. and Moo, Y. (2016), "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250-263. https://doi.org/10.1016/j.memsci.2016.04.069.   DOI
13 Macedonio, F. and Drioli, E. (2010), "Membrane engineering progresses in desalination and water reuse", Membr. Water Treat., 1(1), 75-81. https://doi.org/10.12989/MWT.2010.1.1.075.   DOI
14 Pagliero, M., Bottino, A., Comite, A. and Costa, C. (2020), "Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation", J. Membr. Sci., 596, 117575. https://doi.org/10.1016/j.memsci.2019.117575.   DOI
15 Peydayesh, M., Mohammadi, T. and Kordmirza, S. (2020), "A positively charged composite loose nanofiltration membrane for water purification from heavy metals", J. Membr. Sci., 611, 118205. https://doi.org/10.1016/j.memsci.2020.118205.   DOI
16 Yadav, M., Upadhyaya, S., Singh, K. and Vashishtha, M., (2021), "Morphological study of fabricated PVDF based hydrophobic membrane for different additives and coagulation bath temperature", Asian J. Water Environ. Pollut., 18(3), 39-47. https://doi.org/10.3233/AJW210027.   DOI
17 Zhu, H., Wang, H., Wang, F., Guo, Y., Zhang, H. and Chen, J. (2013), "Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation", J. Membr. Sci., 446, 145-153. https://doi.org/10.1016/j.memsci.2013.06.037.   DOI
18 Garcia-Payo, M.C., Essalhi, M., Khayet, M., Garcia-Fernandez, L., Charfi, K. and Arafat, H. (2010), "Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes", Membr. Water Treat., 1(3), 215-230. https://doi.org/10.12989/MWT.2010.1.3.215   DOI
19 Zahirifar, J., Moosavian, S.M.A., Hadi, A., Khadiv-Parsi, P. and Karimi-Sabet, J. (2018), "Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation", Desalination, 428, 227-239. https://doi.org/10.1016/j.desal.2017.11.028.   DOI
20 Baghel, R., Kalla, S., Upadhyaya, S., Chaurasia, S.P. and Singh, K. (2020), "Chemical Engineering Research and Design CFD modeling of vacuum membrane distillation for removal of Naphthol blue black dye from aqueous solution using COMSOL multiphysics", Chem. Eng. Res. Des., 158, 77-88. https://doi.org/10.1016/j.cherd.2020.03.016.   DOI
21 Gholami, A., Moghadassi, A. R., Hosseini, S. M., Shabani, S. and Gholami, F. (2013), "Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration- membrane modified by iron oxide nanoparticles for lead removal from water", J. Ind. Eng. Chem., 6-11, https://doi.org/10.1016/j.jiec.2013.07.041.   DOI
22 Kotsilkova, R., Borovanska, I., Todorov, P., Ivanov, E., Menseidov, D., Chakraborty, S. and Bhattacharjee, C. (2018), "Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes", J. Theor. Appl. Mech., 48(3), 85-99, https://doi.org/10.2478/jtam-2018-0018.   DOI
23 Gryta, M. (2010), "Application of membrane distillation process for tap water purification", Membr. Water Treat., 1(1), 1-12. https://doi.org/10.12989/MWT.2010.1.1.001   DOI
24 Haan, T.Y., Shah, M., Chun, H.K. and Mohammad, A.W. (2018). "A study on membrane technology for surface water treatment: Synthesis, characterization and performance test", Membr. Water Treat., 9(2), 69-77. https://doi.org/10.12989/MWT.2018.9.2.069   DOI
25 Hou, D., Wang, J., Qu, D., Luan, Z. and Ren, X. (2009), "Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation", Sep. Purif. Technol., 69(1), 78-86. https://doi.org/10.1016/j.seppur.2009.06.026.   DOI
26 Li, Q., Xu, Z.L. and Liu, M. (2011), "Preparation and characterization of PVDF microporous membrane with highly hydrophobic surface", Polym. Adv. Technol., 22 (5), 520-531. https://doi.org/10.1002/pat.1549.   DOI
27 Upadhyaya, S., Singh, K., Chaurasia, S.P. and Dohare, R.K. (2016), "Recovery and development of correlations for heat and mass transfer in vacuum membrane distillation for desalination", Desalin. Water Treat., 3994. https://doi.org/10.1080/19443994.2016.1189245b.
28 Singh, J.K., Upadhyaya, S., Chaurasia, S.P. and Baghel, R. (2017), "Study on membrane fouling in vacuum membrane distillation for desalination", J. Basic Appl. Eng. Res., 4(3), 229-233.
29 Munirasu, S., Banat, F., Ahmed, A. and Abu, M. (2017), "Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation", Desalination ,417, 77-86. https://doi.org/10.1016/j.desal.2017.05.019.   DOI
30 Razmjou, A., Arifin, E., Dong, G.,Mansouri, J. and Chen, V. (2012), "Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation", J. Membr. Sci., 415-416, 850-863. https://doi.org/10.1016/j.memsci.2012.06.004.   DOI