• Title/Summary/Keyword: Servo Parameter Tuning

Search Result 37, Processing Time 0.035 seconds

The Study of Servo-Parameter Tuning Technique for 6-Axes Articulated Robot Manipulator in Consideration of Dynamic Characteristics (동적 특성을 고려한 6축 로봇의 서보 파라미터 튜닝에 관한 연구)

  • Chung, W.J.;Kim, H.G.;Lee, C.M.;Hong, D.S.;Park, S.G.;Seo, Y.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This paper presents a new experimental Servo-Parameter tuning technique for a 6-axes articulated robot manipulator, especially considering robot's dynamics. First of all, investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer(DSA) is performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function can be obtained. In turn, the integral gain of a servo controller can be found out by using the integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller can be obtained by using the Bode plot of the closed loop transfer function. Using the experimental gain tuning technique proposed in this paper, the testing linear motion of DR6-II robot has been shown to be more accurate rather than the motion with a conventional(empirical) gain tuning technique in Doosan Mecatec Co., Ltd., by improving the dynamic response of the robot as well as synchronizing each joint velocity according to the positional command of an end-effector.

Development of Experimental Gain Tuning Technique for Multi-Axis Servo System (다축 서보 시스템의 Gain Tuning에 관한 연구)

  • Chung W.J.;Kim H.G.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-272
    • /
    • 2006
  • This paper presented a new experimental gain tuning technique for a Multi-Axis Servo System. First, the investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer (DSA) was performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function was obtained. In turn, the integral gain of a servo controller can be found out by using the Integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller has been obtained by using the Bode plot of the closed loop transfer function. We have also proposed the technique to find out an optimal parameter of a notch filter, which has a great influence on vibration reduction, by using the damping factor extracted from the Bode plot of closed loop transfer function.

  • PDF

Parameter Identification with Fuzzy Inference and Speed Control of D.C Servo Motor (퍼지추론을 이용한 파라미터 식별 및 D.C 서보 모터의 속도제어)

  • Lee, Un-Cheol;Kim, Jong-Hoon;Lee, In-Hee;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.852-854
    • /
    • 1995
  • This paper proposes a new identification method that utilizes fuzzy inference in parameter identification. The prosed system has an additional control loop where a real plant has replaced by a plant model. Fuzzy rules describe the relationship between comparison results of the features and magnitude of modification in the model parameter values. In this paper, the tuning method which determines parameters of PID controller automatically is described through applying this algorithm to DC servo motor. And we intend to investigate effectiveness of the method by experiments. This method is effective in auto-tuning because the response of the closed loop has verified. The simulated and the experimental results of the dc servo motor are shown to confirm the viability of this method.

  • PDF

A Study on the PID Order tuning by GAs for Velocity Control of DC Servo Motor (DC 서보모터의 속도제어를 위한 GAs의 PID 계수조정에 관한 연구)

  • Park Jae-Hyung;Kim Seong-Kon;Lee Sang-kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1840-1846
    • /
    • 2005
  • In this paper, does by purpose DC servo motor speed controller design about PID coefficient tuning techniques that use genetic algerian. DC servo motor is used in application field of a peat many control machine or robot etc. and in this field, selection of controller parameters requires user's expert knowledge. Therefore, general amount of work engineers must continuously iteration tuning in controller parameters by trial and error. With this, when must tuning parameter coefficient about change of dynamic system or disturbance, can improve the efficiency according to following that is more precised and parameter coefficient value that is optimized by using genetic algorithm. In this paper, from dynamic character modeling get in analyze dynamic character of DC motor desist controller drive control possible that is fast response character md improved speed precision using a Genetic Algorithms.

Fuzzy Auto-tuning PID Controller for Servo System (서보 시스템을 위한 퍼지 자동 동조 PID 제어기)

  • Oh, Hun;Yoon, Yang-Woong
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-66
    • /
    • 1995
  • PID controller is being used in many servo control system. However, when a control system has variable load, it is difficult to guarantee the accurate control of the system. In the way of solving this problem, in this paper, a auto-tuning method of PID controller parameter using fuzzy rule in variable load is presented. The parameter of PID controller are decided by fuzzy rule according to load variation. The accurate control function of fuzzy auto-tuning is demonstrated by simulation.

  • PDF

Optimal Parameter Tuning to Compensate for Radius Errors (반경오차 보정을 위한 최적파라미터 튜닝)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF

A Study on the Implementation of a DC Servo Motor Speed Controller Using Self-tuning PID Algorithm, with Multi-processor (자기동조 PID 알고리즘을 이용한 다중processor 방식의 DC 서보모타 속도제어기의 구현)

  • Chung, Kee-Chull;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.125-128
    • /
    • 1989
  • This paper presents a DC servo motor controller using self-tuning PID algorithm, which can support Multi-processor for the real time processing. Computer simulation as well as experiment using Multi-processor(8088) are implemented with self-tuning PID algorithm. Presented algorithm is used to compare the performance of the controller with that of the classical PID controller through computer simulation and experiment. The result which use the Self-Tuning algorithm show that motor output follows the reference input trajectory fairly well inspite of load disturbances and parameter variations.

  • PDF

Linear Servo System by Fuzzy Control using Parameter Tuning of Membership Function (소속함수 파라미터 동조 퍼지제어에 의한 선형 서보 시스템)

  • 엄기환;손동설;이용구
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.97-103
    • /
    • 1995
  • In this paper, for fuzzy control of linear servo system using the moving coil type linear DC motor, we propose a new fuzzy control method using parameter tuning for membership functions. A proposed fuzzy control method tunes parameters of membership function to have an appropriate control input signal for system when error exceeds predefined value and makes an inference using conventional fuzzy control rules when error reduces to a predefined value. To verify usefulness of a proposed fuzzy control method, making simulation and experiment, we compare with characteristics for conventional fuzzy control method.

  • PDF

DC Servo Motor Control using Model Reference PID Genetic Controller (모델기준 PID 유전 제어기를 이용한 DC 서보 전동기 제어)

  • Son, Jae-Hyun;Cho, Yang-Heang;Kim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.141-145
    • /
    • 2001
  • In this paper, model reference PID genetic controller was proposed in order to overcome the difficulty of reflecting control performance required in the overall control system and defects of the adaptation performance in the PID genetic controller. The proposed controller comprised Inner feedback loop consisting of the PID controller and plant, and outer loop consisting of an genetic algorithm which was designed for tuning a parameter of the controller. A reference model was used for design criteria of a PID controller which characterizes and quantizes the control performance required in the overall control system. Tuning parameter of the controller is performed by the genetic algorithm. The performance of proposed algorithm was verified through experiment for the DC servo motor.

  • PDF

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF