• Title/Summary/Keyword: Servo Filter

Search Result 60, Processing Time 0.032 seconds

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

Two-Degree-of-Freedom Speed Control of Two-Mass System using Optimal Pole Assignment Method (최적 극배치 기법을 이용한 2관성 공진계의 2자유도 속도제어)

  • Jeon, Don-Su;Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.18-25
    • /
    • 2000
  • In the two-mass servo system driving a load through a flexible shaft, a shaft torsional vibration is often generated. PI controller has been generally used is speed control of such system because of the simplicity of structure and related theory. This paper presents the inertia ratio of the PI servo control system which can be designed by using optimal pole assignment method is fixed. Therefore, it's difficult to obtain the desired control characteristics for different systems only by PI control algorithm. To solve this problems the two-mass speed control system with PID controller is designed by using pole assignment method and an optimum PID parameters are derived by evaluating ITAE(Integral of time multiplied by the absolute error) performance index. But this design method has some problems due to a trade-off between the fast command following property and the attenuation of disturbances and vibrations. In this paper, 2-DOF PID control method which satisfies the command following property, the reduction of overshoot and the property of disturbance rejection at the same time is proposed. This is a practical speed controller using the desired value filter and the feedforward gain. From several simulations, it's clarified that the proposed 2-DOF PID controller is useful for the two-mass system, in comparison with the conventional PID controller.

  • PDF

Unknown-Parameter Estimation of Electric-Hydraulic Servo Cylinder Based on Measurements (측정 데이터 기반 전기-유압 서보 실린더의 미지 변수 추정)

  • Seung, Ji Hoon;Yoo, Sung Goo;Seul, Nam O;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Electric-hydraulic sever cylinders are used in many offshore applications such as wind energy farms, solar farms and plants. Jack-up barges are often used for these offshore system operations. Jack-up barge control is up/down by hydraulic cylinder position control. Working in harsh environments can lead to changes in internal parameters. This nonlinearity makes precise control difficult. In order to overcome the problems, we proposed a method of unknown-parameter estimation algorithm based on measurements obtained by system. In this paper, we employee Unscented Kalman filter (UKF) to estimate states and unknown-parameter from augmented nonlinear equation. Performance of estimation results is verified in simulation on an environments of Matlab. The estimation results of the state and unknown-parameter show that the estimation error of unknown-parameter is reduced according to decreasing the state estimation error.

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF

A study on the Performance Improvement of Position Controller in DC Servo Motor System (직류서보전동기 위치제어기의 성능향상에 관한 연구)

  • Yoo, Jong-Gul;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.555-558
    • /
    • 1991
  • The IESF(Integral Error and State Feedback) controller, which incorporates state feedback as a modern control scheme and integral action as a classical control scheme, has better performance than that of the conventional PID controller in linear time-invariant systems. The IESF controller requires the measurement of all the state variables. But, unfortunately, it may be difficult or impossible to measure all state variables in many applications. And the IESF controller is applicable only to pole-assignable linear time-invariant system without time delay. In this paper, new IESF controller structure was proposed which performs feedback with only measurable state variables. In order to estimate the unmeasurable state variables. It was adopted the filter mode by full-order obserber. The good performance and effectiveness of the proposed controller was confirmed by computer simulation.

  • PDF

Design of servo driving control system for heavy load (대부하용 서보 구동 제어 시스템의 설계)

  • 이만형;이장명;윤강섭;최근국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.504-509
    • /
    • 1993
  • A heavy load driving system for the gun laying control is designed with the analysis of performance in pointing accuracy and speed. To eliminate the firing noise and high frequency system noise, a .PI. filter is implemented in conjunction with the PI velocity control. To incorporate the gunner's commands in the PID position control loop easily, a .mu.-processor is utilized in the position control loop. Main difficulties in the heavy load driving system exist in the design of motor drivers and heat sinkers. With an appropriate design of the motor drivers and heat sinkers, the performance of the gun laying system is analyzed by the simulation.

  • PDF

Sensor Fault Detection and Compensation Schemes for Vector Controlled Induction Motor Drives (벡터제어 유도전동기 구동시스템을 위한 센서고장 검출 및 보상)

  • Ryu, Ji-Su;Lee, Hee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.42-45
    • /
    • 2001
  • In the speed-sensorless induction motor control systems, only a few percents of error in current measurement badly deteriorates the control performance. And early detection and accomodation of the faults of current sensor is very important to enhance the reliability of the induction motor control system. In this paper, we propose two sensor fault detection schemes having desired functions; fault detection, isolation of failed sensor and compensation of fault effect. The two schemes operate in real-time and employ EKFs (Extended Kalman Filter) for residual generation. Simulation results show that the proposed schemes are very useful in maintaining the control performance of the induction motor driven servo systems even in the face of sensor faults.

  • PDF

Enhanced Track Jump Stability in Optical Disc Drives (광디스크 드라이브에서의 트랙 점프 안정도 향상)

  • Ryoo, Jung-Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.683-687
    • /
    • 2009
  • Track jump control is a random access strategy for short distance movement. The most common track jump scheme is a bang-bang control of a kick and brake manner. In a conventional track jump scheme, a track-following compensator is turned off during kick and brake periods, and restarted at a target track for track pull-in. The inevitable controller switching with non-zero initial condition results in undesirable transient response, and excessive overshoot in the transient response causes track pull-in failure. In this paper, a new track jump scheme is proposed for enhancing track jump stability. Instead of control switching, internal states of a track-following controller are artificially manipulated for kick and brake actions in a digital control environment. Experimental results are provided in comparison with conventional track jumps.