• Title/Summary/Keyword: Servo Control

Search Result 1,724, Processing Time 0.026 seconds

Servo Drives State of the Art in Industrial Applications - A Survey

  • Kennel R.;Kobs G.;Weber R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.321-325
    • /
    • 2001
  • Servo drives with microcomputer control provide the possibility of using modem and sophisticated control algorithms. As an additional feature it is possible to implement parallel and/or redundant software and hardware structures to realise safe motion or similar security functions. Unfortunately microcomputer control also has some impact on the behaviour of servo drives. Control algorithm, cycle time, sensors and interface have to be perfectly synchronised. Special control schemes are necessary on the line side (power supply) to meet the actual requirements concerning EMC. This contribution presents experiences and results obtained from a modem digital drive system pointing out the influences of low and high accuracy position sensors and the interdependencies mentioned above.

  • PDF

Design of Digital Servo Controller for Hybrid Linear Pulse Motor (하이브리드형 선형 펄스모터의 디지털 서보 제어기 설계)

  • Bae D.K.;Ahn J.Y.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.389-392
    • /
    • 2003
  • A use of micro processor having H-com functions is gradually increased, and this paper describes the digital servo controller applied to linear pulse motor The TMS320LF2407, made by TI(Texas Instruments Co.), is used as a arithmetic unit in control circuit, designed f3r motor drive and available for the implement of high performance and miniaturization. Also, it can allow the sufficient debugging and downloading into control board for independent operation. A current control in order to carry out a position control is of a digital current control mode, and its implement confirmed the servo control performance of position control.

  • PDF

Speed Control of Induction Motor Systems by Design Method of Digital Servo System (디지탈 서보계 설계법에 의한 유도 전동기 시스템의 속도 제어)

  • 김상봉;김환성;이동철;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.50-59
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital servo control method and a well-known second order differential equation as model. The basic concept of using the modeling equation stated in the above is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc, just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. Futhermore, the proposed speed control system can be treated as a single input and single output system. The effectiveness of the servo control system obtained by the above-mentioned design concept is illustrated by the experimental results in the presence of both step reference changes and load variations. It is observed from the experimental results that the steady state-error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal changes and load variations.

  • PDF

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

Stability Criterion of Repetitive Control System Using Phase-Lead and Lag Compensator (진상,지상 보상기를 고려한 반복제어계의 안정성 판별)

  • 서진호;강병철;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.41-45
    • /
    • 1997
  • To design a control system, it is a elementary point that the stability of the system should be guaranteed. Also, the phase of the system plays an important role for its frequence performance. In this paper, we present two stability criterion of repetitive control system with phase-lead and lag compensator. First, the stability criterion for the servo control system with phase-lead and lag compensator is shown by using small-gain theorem. Second, for the repetitive control system with the compensator, the stability criterion, also, is determined by using small-gain theorem. Two stability criterions show the same results that the stability depends on a coefficient of the phase-lead and lag compensator under some condition in servo control system and repetitive control system.

  • PDF

A speed control of AC servo motor with sliding mode controller

  • Lee, Je-Hie;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • In this paper, a sliding mode controller (SMC) which can be characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary to get the sliding plane is estimated by an observer. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed control scheme for speed controller is shown by the real-time experimental results in the paper.

  • PDF

The Study on Control System Simplification of Underdevelop ing Heavy-Load Driving System Using Developed Performance-estimation program (대부하 구동/제어 시스템 성능추정 프로그램을 이용한 제어시스템 단순화 연구)

  • 최근국;이만형;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.999-1003
    • /
    • 1996
  • In this study, underdeveloping heavy-load driving servo control system, which are composed of controller, electro-hydraulic servo-valve, hydraulic motor, reduction gear box, turret slew bearing and turret structure, are investigated to simplify the control system. To estimate the effect of each component, model ins and simulation of linear and nonlinear system are carried out. In the first stage, to prove the retiability of performance estimation pro-gram, simulation results are compared with experimental results. In the second stage, the effect of each component of control system is evaluated and then a simplified control system is suggested.

  • PDF

Robust Speed Control of DC Servo Motor Using PID-Neural Network Hybrid Controller (PID-신경망 복합형 제어기를 이용한 직류 서보전동기의 강인한 속도제어)

  • 박왈서;전정채
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simula tion.a tion.

  • PDF

Dual servo control for aperture type near field storage head (개구형 근접장 헤드장치의 간극제어를 위한 이중 서보 제어)

  • Lee, Sung-Q.;Kim, Eun-Kyung;Park, Kang-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.875-878
    • /
    • 2005
  • This paper presents active control of aperture type near-field storage head. In order to achieve fast and accurate control, dual servo control algorithm is applied. Based on the big difference in time constant, we seperate two actuator and control independently. With the combination of fine and coarse actuator, gap is controlled within 100nm until the disk rotates upto 10 rpm speed. From the experimental results, the feasibility and performance of active gap control is proved.

  • PDF

Fuzzy Control for An Electro-hydraulic Servo System (전기 유압 서어보 시스템의 퍼지제어)

  • Joo, H.H.;Lee, J.W.;Jang, W.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.139-148
    • /
    • 1995
  • In this paper an electro-hydraulic servo system is designed by using a fuzzy control algorithm. In order to drive an optimal fuzzy control system, a simulation program for the control system has been developed. By this program the fuzzifier and defuzzifier, a fuzzy inference method, a fuzzy relational matrix, and a fuzzy inference method are investigated. As a result, Larsen inference method, 9*9 fuzzy relational matrix, and center of area defuzzifier are turned out the best as parameters. Finally this method is compared with the conventional PID algotithm, and showed that the fuzzy control performs better than PID algorithm. The fuzzy control performs very well adap- tation against uncertain disturbances.

  • PDF