• Title/Summary/Keyword: Service Survivability

Search Result 55, Processing Time 0.032 seconds

An Approach to a Quantitative Evaluation of U-Service Survivability Reflecting Cyber-terrorism (사이버테러를 고려한 U-Service 생존성의 정량적 평가 방안)

  • Kim, Sung-Ki
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.67-72
    • /
    • 2011
  • A system that provides a ubiquitous service is a networked system that has to overcome their circumstances that the service survivability is weak. the survivability of a networked system is defined as an ability of the system that can offer their services without interruption, regardless of whether components comprising the system are under failures, crashes, or physical attacks. This paper presents an approach that end users can obtain a quantitative evaluation of U-service survivability to reflect intended cyber attacks causing the networked system to fall into byzantine failures in addition to the definition of the survivability. In this paper, a Jini system based on wireless local area networks is used as an example for quantitative evaluation of U-service survivability. This paper also presents an continuous time markov chain (CTMC) Model for evaluation of survivability of U-service that a Jini system provides, and an approach to evaluate the survivability of the U-service as a blocking probability that end users can not access U-services.

Analysis of abnormal traffic controller based on prediction to improve network service survivability (네트워크 서비스의 생존성을 높이기 위한 예측기반 이상 트래픽 제어 방식 분석)

  • Kim Kwang sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.296-304
    • /
    • 2005
  • ATCoP(Abnormal traffic controller based on prediction) is presented to securely support reliable Internet service and to guarantee network survivability, which is deployed in Internet access point. ATCoP is a method to control abnormal traffic that is entering into the network When unknown attack generates excessive traffic, service survivability is guaranteed by giving the priority to normal traffic than abnormal traffic, that is reserving some channels for normal traffic. If the reserved channel number increases, abnormal traffic has lower quality service by ATCoP system and then its service survivability becomes worse. As an analytic result, the proposed scheme maintains the blocking probability of normal traffic on the predefined level in the specific interval of input traffic.

A Reaction Scheme supporting the Reliable Service in Mobile Networks (이동망에서 서비스 보장을 위한 대응방안)

  • 박상준
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.65-73
    • /
    • 2004
  • The capability to provide the network service must survive even if a significant network system element is disrupted. To sustain the network service under the system failure, network survivability mechanisms minimizing the impact of failures are needed. Also, since the mobile network has its unique characteristic, the survivability scheme for the vulnerability of the mobile network is required. This paper proposes a survivability scheme to support the reliable service of the wireless access point level (BS-base station system). By the survivability scheme, the mobile network can use an overlap BS of the cellular network architecture after a BS system failure. We analyze the performance of the proposed scheme using Markov model. Also, a computer simulation is used for the scheme analysis. The proposed scheme shows that the service of the mobile network can be provided under the BS system failure.

  • PDF

A Study on Survivability Management Model for Information Systems Over Internet (인터넷에서 정보시스템의 생존성 관리 모델)

  • Kim, Hwang-Rae;Park, Jin-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1185-1193
    • /
    • 2006
  • The next generation networked information system over unbounded internet is open to various network attacks and incidents, so many users suffer from damage and financial loss. In this paper we propose a survivability management model to evaluate the tradeoffs between the cost of defence mechanisms for information systems with weighted service and the resulting expected survivability after a network attack or occurrence of incidents. By varying the level of defence in the simulation, we examine how survivability changes according to the defense level. We derive a cost/survivability and weighted service/survivability curve that managers can use to decide on the appropriate level of defense for the network system of their organizations.

  • PDF

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle based on 3-dimensional Environment (3차원 환경 기반 무인 항공기 생존성 극대화를 위한 이동 경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.304-313
    • /
    • 2011
  • An Unmanned Aerial Vehicle(UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is the path planning to maximize survivability for UAV based on 3-dimensional environment. A mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and solved by transforming MRPP into SPP(Shortest Path Problem). This study also suggests a $A^*PS$ algorithm based on 3-dimensional environment to UAV's path planning. According to comparison result of the suggested algorithm and SPP algorithms (Dijkstra, $A^*$ algorithm), the suggested algorithm gives better solution than SPP algorithms.

A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle (무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

A Novel Method for Survivability Test Based on End Nodes in Large Scale Network

  • Ming, Liang;Zhao, Gang;Wang, Dongxia;Huang, Minhuan;Li, Xiang;Miao, Qing;Xu, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.620-636
    • /
    • 2015
  • Survivability is a necessary property of network system in disturbed environment. Recovery ability is a key actor of survivability. This paper concludes network survivability into a novel composite metric, i.e. Network Recovery Degree (NRD). In order to measure this metric in quantity, a concept of Source-Destination Pair (SD Pair), is created to abstract end-to-end activity based on end nodes in network, and the quality of SD Pair is also used to describe network performance, such as connectivity, quality of service, link degree, and so on. After that, a Survivability Test method in large scale Network based on SD pairs, called STNSD, is provided. How to select SD Pairs effectively in large scale network is also provided. We set up simulation environment to validate the test method in a severe destroy scenario and evaluate the method scalability in different large scale network scenarios. Experiment and analysis shows that the metric NRD correctly reflects the effort of different survivability strategy, and the proposed test method STNSD has good scalability and can be used to test and evaluate quantitative survivability in large scale network.

Enhancing Network Service Survivability in Large-Scale Failure Scenarios

  • Izaddoost, Alireza;Heydari, Shahram Shah
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.534-547
    • /
    • 2014
  • Large-scale failures resulting from natural disasters or intentional attacks are now causing serious concerns for communication network infrastructure, as the impact of large-scale network connection disruptions may cause significant costs for service providers and subscribers. In this paper, we propose a new framework for the analysis and prevention of network service disruptions in large-scale failure scenarios. We build dynamic deterministic and probabilistic models to capture the impact of regional failures as they evolve with time. A probabilistic failure model is proposed based on wave energy behaviour. Then, we develop a novel approach for preventive protection of the network in such probabilistic large-scale failure scenarios. We show that our method significantly improves uninterrupted delivery of data in the network and reduces service disruption times in large-scale regional failure scenarios.

Survivability Analysis of MANET Routing Protocols under DOS Attacks

  • Abbas, Sohail;Haqdad, Muhammad;Khan, Muhammad Zahid;Rehman, Haseeb Ur;Khan, Ajab;Khan, Atta ur Rehman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3639-3662
    • /
    • 2020
  • The network capability to accomplish its functions in a timely fashion under failures and attacks is known as survivability. Ad hoc routing protocols have been studied and extended to various domains, such as Intelligent Transport Systems (ITSs), Unmanned Aerial Vehicles (UAVs), underwater acoustic networks, and Internet of Things (IoT) focusing on different aspects, such as security, QoS, energy. The existing solutions proposed in this domain incur substantial overhead and eventually become burden on the network, especially when there are fewer attacks or no attack at all. There is a need that the effectiveness of these routing protocols be analyzed in the presence of Denial of Service (DoS) attacks without any intrusion detection or prevention system. This will enable us to establish and identify the inherently stable routing protocols that are capable to survive longer in the presence of these attacks. This work presents a DoS attack case study to perform theoretical analysis of survivability on node and network level in the presence of DoS attacks. We evaluate the performance of reactive and proactive routing protocols and analyse their survivability. For experimentation, we use NS-2 simulator without detection or prevention capabilities. Results show that proactive protocols perform better in terms of throughput, overhead and packet drop.

A Study of Efficient Algorithm for Survivable Network Design with Conduit (관로가 있는 생존가능망 설계에 관한 효율적인 알고리즘 연구)

  • Kang, Hyo-Kwan;Han, Chi-Geun
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.629-636
    • /
    • 2001
  • Network is changed from voice-based network into multimedia-based network by development of communication technology and multimedia service. We need a large bandwidth for multimedia service. The optical fiber is a more suitable medium than existing copper-based cable for large bandwidth. But, it is so expensive than copper-based cable. So, Minimizing total cost becomes a more important concept. In order to construct a minimum cost network, we have to consider existing conduits in network. On the other hand, optical fiber network allows that larger amount of traffic can be transmitted than copper-based network does. However, a failure of a node or link can make a serious damage to the network service. Thus, we have to get multiple paths to support continuous service even if a loss of failure occurs in some point of the network. The network survivability problem is to design the network that can provide reliable service to customers anytime with minimum total cost. In an existing solution of the network survivability problem with conduits, a conduit is considered only one time. But, the conduit is reusable if the network satisfies the required survivability. Proposed algorithm can more effectively considered already existed conduit. Network survivability and edge cost is predetermined. The proposed algorithm finds the best solution by conduit sharing within the limits of network survivability. According to the simulation result, the proposed method can decrease 7% of total cost than an existing method by effective conduits adaption.

  • PDF