• Title/Summary/Keyword: Service Priority Discipline

Search Result 18, Processing Time 0.021 seconds

Analysis of Priority Systems with a Mixed Service Discipline

  • Hong, Sung-Jo;Hirayama, Tetsuji
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-288
    • /
    • 1995
  • We investigate a multiclass priority system with a mixed service discipline, and propose a new approach to the analysis of performance measures (mean waiting times) of the system. Customers are preferentially served in the order of priority. The service discipline at each station is either gated or exhaustive discipline. We formulate mean waiting times as functions on the state of the system. We first consider the system at an arbitrary system state to obtain explicit formulae for the mean waiting times, and then derive their steady state values by using the property of Poisson arrivals to see time averages and the generalized Little's formula.

  • PDF

The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline (엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

(N, n)-Preemptive Repeat-Different Priority Queues ((N, n)-선점 재샘플링-반복 우선순위 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2017
  • Priority disciplines are an important scheme for service systems to differentiate their services for different classes of customers. (N, n)-preemptive priority disciplines enable system engineers to fine-tune the performances of different classes of customers arriving to the system. Due to this virtue of controllability, (N, n)-preemptive priority queueing models can be applied to various types of systems in which the service performances of different classes of customers need to be adjusted for a complex objective. In this paper, we extend the existing (N, n)-preemptive resume and (N, n)-preemptive repeat-identical priority queueing models to the (N, n)-preemptive repeat-different priority queueing model. We derive the queue-length distributions in the M/G/1 queueing model with two classes of customers, under the (N, n)-preemptive repeat-different priority discipline. In order to derive the queue-length distributions, we employ an analysis of the effective service time of a low-priority customer, a delay cycle analysis, and a joint transformation method. We then derive the first and second moments of the queue lengths of high- and low-priority customers. We also present a numerical example for the first and second moments of the queue length of high- and low-priority customers. Through doing this, we show that, under the (N, n)-preemptive repeat-different priority discipline, the first and second moments of customers with high priority are bounded by some upper bounds, regardless of the service characteristics of customers with low priority. This property may help system engineers design such service systems that guarantee the mean and variance of delay for primary users under a certain bounds, when preempted services have to be restarted with another service time resampled from the same service time distribution.

M/G/1 Preemptive Priority Queues With Finite and Infinite Buffers (유한 및 무한 용량 대기열을 가지는 선점 우선순위 M/G/1 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.1-14
    • /
    • 2020
  • Recently, M/G/1 priority queues with a finite buffer for high-priority customers and an infinite buffer for low-priority customers have applied to the analysis of communication systems with two heterogeneous traffics : delay-sensitive traffic and loss-sensitive traffic. However, these studies are limited to M/G/1 priority queues with finite and infinite buffers under a work-conserving priority discipline such as the nonpreemptive or preemptive resume priority discipline. In many situations, if a service is preempted, then the preempted service should be completely repeated when the server is available for it. This study extends the previous studies to M/G/1 priority queues with finite and infinite buffers under the preemptive repeat-different and preemptive repeat-identical priority disciplines. We derive the loss probability of high-priority customers and the waiting time distributions of high- and low-priority customers. In order to do this, we utilize the delay cycle analysis of finite-buffer M/G/1/K queues, which has been recently developed for the analysis of M/G/1 priority queues with finite and infinite buffers, and combine it with the analysis of the service time structure of a low-priority customer for the preemptive-repeat and preemptive-identical priority disciplines. We also present numerical examples to explore the impact of the size of the finite buffer and the arrival rates and service distributions of both classes on the system performance for various preemptive priority disciplines.

Service Deployment and Priority Optimization for Multiple Service-Oriented Applications in the Cloud (클라우드에서 서비스 지향 응용을 위한 최적 서비스 배치와 우선순위 결정 기법)

  • Kim, Kilhwan;Keum, Changsup;Bae, Hyun Joo
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.201-219
    • /
    • 2014
  • This paper considers service deployment and priority optimization for multiple service-oriented applications sharing reusable services, which are deployed as multiple instances in the cloud. In order to handle variations in the workloads of the multiple applications, service instances of the individual reusable services are dynamically provisioned in the cloud. Also service priorities for each application in a particular reusable service are dynamically adjusted. In this paper, we propose an analytic performance model, based on a queueing network model, to predict the expected sojourn times of multiple service-oriented applications, given the number of service instances and priority disciplines in individual reusable services. We also propose a simple heuristic algorithm to search an optimal number of service instances in the cloud and service priority disciplines for each application in individual reusable services. A numerical example is also presented to demonstrate the applicability of the proposed performance model and algorithm to the proposed optimal decision problem.

A Study on the Performance of BITBUS Network as a Field Bus (Field Bus로서의 BITBUS Network에 대한 성능 연구)

  • 성백문;임동민;이황수;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.1947-1955
    • /
    • 1989
  • With the increasing complexity of cabling at sensory level in process control and manufacturing automation, field buses were introduced to replace the traditional point to point links from each sensor or acruator to its controlling equipments by a single link on which all information is transmitted seriall and multiplexed in time. In this papr, we introduce the BITBUS network as a field bus. For the service discipline of the BITBUS network, two service strategies are proposed to obtain the performance of the network. They are the equal priority cyclic service strategy and the non-equal priority cyclic service strategy. The former assigns equal priority to each node for polling and the latter assumes non-equal priority. The BITBUS network was modeled as a cyclic queueing model and it is analyzed by two methods: the Kuehn's and the Boxma's. Computer simulation was also done for the cyclic queueing model and simulation results were compared with those. Under mathematically non-analyzable environment, only the computer simulation was done. From the simulation result, in order to meet the response time requirement of 5 msec imposed by International Electrotechnical Commission when each node has the average traffic of 5000 messages/sec in manufacturing automation the number of slave nodes should be smaller than 10 at the transmission rate of 2.5 Mbps.

  • PDF

A traffic control agent to manage flow usage in Differentiated Service Network (차별화서비스 네트워크에서 흐름 관리를 위한 트래픽 제어 에이전트)

  • 이명섭;박창현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.69-72
    • /
    • 2003
  • This paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network.

  • PDF

Sojourn Times in a Multiclass Priority Queue with Random Feedback

  • Hong, Sung-Jo;Hirayama, Tetsuji
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.123-145
    • /
    • 1996
  • We consider a priority-based multiclass queue with probabilistic feed-back. There are J service stations. Each customer belongs to one of the several priority classes, and the customers of each class arrive at each station in a Poisson process. A single server serves queued customers on a priority basis with a nonpreemptive scheduling discipline. The customers who complete their services feed back to the system instantaneously and join one of the queues of the stations or depart from the system according to a given probability. In this paper, we propose a new method to simplify the analysis of these queueing systems. By the analysis of busy periods and regenerative processes, we clarify the underlying system structure, and systematically obtain the mean for the sojourn time, i.e., the time from the arrival to the departure from the system, of a customer at every station. The mean for the number of customers queued in each station at an arbitrary time is also obtained simultaneously.

  • PDF

A Measure for Service Quality of University Dormitory and Importance - Performance Analysis (대학 기숙사의 서비스품질 측정 및 중요도-성과분석)

  • Riew, Moon-Charn
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • A measure for service quality of university dormitory is developed to gain a better understanding of the quality issues that impact on students' experiences and to improve service quality. Literature survey, thorough discussion with staff members and a pilot test are utilized to elicit attributes of service quality. Factor analysis is used to group the service quality attributes into dimensions. The resulting measure is consisted of 6 dimensions; competence, attitude, facility, amenity, security and discipline. Importance-performance analysis is utilized to verify which factors to be focused on with high Priority to improve dormitory service.

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.