• Title/Summary/Keyword: Service Lifetime

Search Result 209, Processing Time 0.021 seconds

The Weatherability of Non-woven Geotextiles Used in Reinforced Earth Wall (보강토옹벽에 적용되는 지오텍스타일의 내후성)

  • 유중조;김영윤;전한용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.419-424
    • /
    • 2001
  • In the KOESWall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.

  • PDF

Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment (파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가)

  • Kwak, Sang-Log;Wang, Jong-Bae;Park, Youn-Won;Lee, Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

Reliability Assessment of Anticorrosive Paints with Accelerated Degradation Test (가속열화시험에 의한 건축용 도료의 신뢰성 평가)

  • Kwon, Young-Il;Kim, Seung-Jin
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.291-302
    • /
    • 2009
  • Accelerated and field degradation tests are performed for reliability assessment of an anticorrosive paint for steel structures. Test data were analyzed to obtain the degradation model and the life time distributions of the paint. A power law degradation model and lognormal performance distribution were used to predict the lifetime of the anticorrosive paint and the method of finding an acceleration factor is provided.

  • PDF

Fatigue Damage Analysis Using Rainflow Counting Method (Rainflow Counting방법을 이용한 피로 손상 해석)

  • Kim, Jung-Hun;Lee, Hak;Zi, Goang-Seup;Park, Byung-Hoon;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.387-392
    • /
    • 2007
  • The loss of strength in an aircraft structure as a result of cyclic stress over a period of life time is an important phenomenon for aircraft analysis. Load/stress spectrum can be constructed from the occurrence frequency based on the load/stress histories during a service lifetime. In this paper, three types of fatigue spectrum was compared. The rainflow counting method was applied to concentrate the stress spectrum obtained from the flight loads recorder(FLDR). A fatigue analysis for different stress spectrum was performed by using LUSAS computer application.

  • PDF

A Study on Determining Weight of Lifetime Value(LTV) using Analytic hierarchy Process(AHP) (계층분석과정을 활용한 고객생애가치 가중치 결정에 관한 연구)

  • 양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.131-140
    • /
    • 2002
  • Today's environment of enterprise is changing, They have to face customer' demands with the right product, the right service and supply them at the right time. And also cut down logistics and inventory cost and bring up the profit as much as they can. This means the change of putting enterprise first in importance to putting customer first importance. therefore to correspond to customer's demand, shorting lead time is becoming a essential condition. The answer to this changes of environment is supply chain management. In this paper, It consolidates the necessity on a LTV(Life Time Value) and analyzes data which is concerned of Customer Value. Under the these environments, defines the LTV(Life Time Value) rule that can improve the customer value. We solved this problems using AHP(Analytic Hierarchy Process) for consistency at relationship matrix, AHP(Analytic Hierarchy Process) is based on Saaty's consistency rate. If consistency rate is under 0.1 point, preference rate's weights are acceptable. This study develop a program for AHP weights and support Satty's consistency rate.

Redundancy optimization to meet two reliability requirements (두 가지의 신뢰도 요구조건을 만족하기 위한 직렬 시스템의 최적 중복 구조 설계)

  • Park, Jun-Seo;Kim, Jae-Hoon;Choi, Sung-Kyou;Kim, Jong-Woon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1198-1202
    • /
    • 2006
  • MTBF(Mean Time Between Failure)와 MTBSF(Mean Time Between Service Failure) are two representative quantitative reliability requirements for railway systems. There are the case that both of the two requirements are presented and the case that only one of them is presented in the specification of railway systems. we deal with the redundancy allocation problem to meet the two reliability requirements. The redundancy increases MTBSF while it decreases MTBF. Parallel redundancy and the exponential lifetime distribution of components are considered for the series systems. Mathematical model and example are presented for the redundancy optimization problem of minimizing the cost subjecting to MTBF and MTBSF requirements.

  • PDF

A study on the heat cycle aging of insulation materials in large generator stator windings (대형발전기 고정자권선 절연재료의 열 사이클에 의한 열화에 관한 연구)

  • 김희곤;박영관
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.553-557
    • /
    • 1996
  • Heat cycle aging of insulating materials in large generator stator winding has been investigated using both on-line and off-line test methods. On this study, principally, off-line test against actual generator in service was carried out to acquire information about polarization index(PI) and dissipation factor, dissipation factor tip-up, maximum partial discharge for the purpose of remnant breakdown voltage and life assessment. It was found from the tests that both dissipation factor and maximum partial discharge decreased with the increase of operating hours and starting numbers. It was found from off-line tests that the remnant breakdown voltage had a strong relationship with both dissipation factor and maximum partial discharge the remnant breakdown voltage as a results of both operating hours and starting number and the nondestructive tests were proposed as parameters which can predict the remnant lifetime of insulating materials in large generator stator windings. (author). 8 refs., 8 figs., 2 tabs.

  • PDF

Estimation of Thermal Aging Embrittlement of LWR Primary Pressure Boundary Components

  • Kim, Sunki;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.609-616
    • /
    • 1998
  • Cast duplex stainless steels are extensively used for primary pressure boundary components. These components are, however, embrittled due to the precipitation of $\alpha$' phase by spinodal decomposition and other processes when exposed to reactor operating temperature for a design lifetime or life extension conditions. This report presents a procedure for estimating the current condition and the residual life of safety-related stainless steel components by using ANL database and correlations. The database of Charpy impact energy suggests that CF-8M grade is the most susceptible to thermal aging and CF-3 grade is the least. Thus, the integrity of CF-8M alleys may be degraded seriously and the degree of deterioration may exceed acceptance limit after several years of service in the nuclear reactors.

  • PDF

Fatigue Behavior of Catenary Wires by Environments Degradation (환경열화에 의한 가선재의 피로거동)

  • 김용기;장세기
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • The effect of surface damage on fatigue properties of catenary wires were investigated to estimate their service lift. As surface defects of the wires caused by surface corrosion increase, surface roughness gets worse, and as roughness increases, it is easy for moisture coming from rain and dew to be condensed around uneven parts of the surface. The condensed moisture causes a locally severe corrosion which leads to damage of the wires. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pantographs touch contact line. The frequent cyclic load on the wire may result in a fatigue fracture. Surface damage by corrosion can make formation of crack initiation at fatigue. In the present study, the fatigue life of the used wire was measured 35 to 50% compared with that of new one in average.

Development of a new lifetime prediction method for gas turbine core parts by digital image analysis of precipitates morphology (석출물 형상의 디지털 이미지 분석에 의한 가스터빈 핵심부품의 새로운 수명평가기술 개발)

  • Chang, Moon Soo;An, Seong Uk
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.148-157
    • /
    • 2008
  • To describe the lifetime prediction of gas turbine core parts serviced in some ten thousands rpms at over $1,000^{\circ}C$, the Larson-Miller Creep Curves, which are formed by creep rupture tests as the destructive experiment with parameters of stress and temperature, are used often, but not exact and reliable with errors of over some tens. On the other hand, this study shows a non-destructive method with increased accuracy and reliability. The SEM and TEM specimens were extracted by replica after polishing the local airfoil and root surfaces of the first stage scraped blade (bucket), serviced for 18,000 hours at $1,280^{\circ}C$ in Gas Turbines of Boryong. The observed TEM and SEM precipitates were digitalized for calculation of the average size. Here we could find the precipitate size grown from $0.45{\mu}m$ to $0.6{\mu}m$ during service and the grown precipitates to be still sound. From these results we could conclude that the scraped balde can be used for ten thous and hours additionally and for twenty thousand hours by additional heat treatments on the scraped blade.