• Title/Summary/Keyword: Serum copper

Search Result 129, Processing Time 0.03 seconds

Effects of different copper sources (inorganic and organic) on the growth performance, fecal excretion, intestinal morphology, and health in growing pigs

  • Kim, Minji;Jung, Hyunjung;Seong, Pil-Nam;Jeong, Jin Young;Baek, Youl-Chang;Park, Seol Hwa;Ryu, Chae Hwa;Kim, Ki Hyun;Chun, Ju Lan;Oh, Sang-Ik;Kim, Byeonghyeon
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.447-454
    • /
    • 2021
  • This study was conducted to evaluate the effects of different copper sources (inorganic and organic) on the growth performance, fecal copper excretion, intestinal morphology, and health in growing pigs. A total of 40 growing pigs (30.22 ± 1.92 kg) were randomly assigned to 5 dietary treatments: a basal control diet (CON), 4 experimental diets supplemented with either copper sulfate (CuSO4), Cu-glycine complex (CuGly), Cu-amino acid complex (CuAA), or Cu-hydroxy-4-methylthio butanoate chelate complex (CuHMB) at 100 ppm, respectively. At the end of the study (28 days), fecal and blood samples were collected, and the pigs were slaughtered to determine the intestinal morphology. During the 28 days of the experimental period, pigs fed the inorganic and organic copper showed a higher average daily gain (p < 0.01) and gain feed ratio (p < 0.01). There were no differences in mineral concentrations of the serum; however, the copper concentration of the feces was lower (p < 0.01) in the CuAA and CuHMB groups. The intestinal morphology and blood profiles did not significantly differ between the groups. In conclusion, the organic copper sources (CuAA and CuHMB) can be used as a growth promoter to replace the CuSO4 without any negative effects on health in growing pigs and to reduce fecal copper excretion.

The Effect of Systemic Iron Level on the Transport and Distribution of Copper to the Brain (체내 철 수준이 뇌로의 구리 이동과 분포에 미치는 영향)

  • Choi, Jae-Hyuck;Park, Jung-Duck;Choi, Byung-Sun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.279-287
    • /
    • 2007
  • Copper (Cu) is an essential trace element indispensable for brain development and function; either excess or deficiency in Cu can cause brain malfunction. While it is known that Cu and Fe homeostasis are strictly regulated in the brain, the question as to how systemic Fe status may influence brain Cu distribution was poorly understood. This study was designed to test the hypothesis that dietary Fe condition affects Cu transport into the brain, leading to an altered brain distribution of Cu. Rats were divided into 3 groups; an Fe-deficient (Fe-D) group which received an Fe-D diet ($3{\sim}5 mg$ Fe/kg), a control group that was fed with normal diet (35mg Fe/kg), and an Fe-overload group whose diet contained an Fe-O diet (20g carbonyl Fe/kg). Following a 4-week treatment, the concentration of Cu/Fe in serum, CSF (cerebrospinal fluid) and brain were determined by AAS, and the uptake rates of Cu into choroids plexus (CP), CSF, brain capillary and parenchyma were determined by an in situ brain perfusion, followed by capillary depletion. In Fe-D and Fe-O, serum Fe level decreased by 91% (p<0.01) and increased by 131% (p<0.01), respectively, in comparison to controls. Fe concentrations in all brain regions tested (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were lower than those of controls in Fe-D rats (p<0.05), but not changed in Fe-O rats. In Fe-D animals, serum and CSF Cu were not affected, while brain Cu levels in all tested regions (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were significantly increased (p<0.05). Likewise, the unidirectional transport rate constants $(K_{in})$ of Cu in CP, CSF, brain capillary and parenchyma were significantly increased (p<0.05) in the Fe-D rats. In contrast, with Fe-O, serum, CSF and brain Cu concentrations were significantly decreased as compared to controls (p<0.05). Cu transport was no significant change of Cu transport of serum in Fe-O rats. The mRNA levels of five Cu-related transporters were not affected by Fe status except DMT1 in the CP, which was increased in Fe-D and decreased in Fe-O. Our data suggest that Cu transport into brain and ensuing brain Cu levels are regulated by systemic Fe status. Fe deficiency appears to augment Cu transport by brain barriers, leading to an accumulation of Cu in brain parenchyma.

Effects of Selenium, Copper and Magnesium on Antioxidant Enzymes and Lipid Peroxidation in Bovine Fluorosis

  • Han, Bo;Yoon, Soonseek;Su, Jingliang;Han, H.R.;Wang, Mei;Qu, Weijie;Zhong, Daibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1695-1699
    • /
    • 2004
  • The antioxidant enzymes, lipid peroxidation and free radicals assessment were made of the effects of selenium, copper and magnesium on bovine endemic fluorosis under high fluoride, low selenium and low copper productive conditions. Thirty-two beef cattle were selected from high fluoride area, and randomly divided into four groups with eight cattle each as follows: (1) high fluoride control group (HFC); (2) supplemented group with 0.25 mg/kg selenium (HFSe); (3) supplemented group with 15 mg/kg copper (HFCu) and (4) supplemented group with 0.25 mg/kg selenium+15 mg/kg copper+1 mg/kg magnesium (HFSeCuMg) per day for 83 days. Moreover, eight beef cattle were selected from non-high fluoride area as normal control group. Blood samples were collected from cattle on 0 d, 30 d and 83 d respectively, to analyze the enzyme activities and concentration of GSH-px, CAT, SOD, MDA and free radicals. The results showed that the contents of free radicals and MDA in HFC group were significantly higher, and the whole blood GSH-px, CAT, erythrocyte SOD activities were lower than the normal control group. Free radicals, metabolic imbalance and antioxidant disorder therefore, play an important role in fluorosis. However, GSH-px, CAT and SOD activities in HFSe group and HFSeCuMg group at 30 d and 83 d were markedly higher than the same groups at the 0 d and the HFC group at the same time. Likewise, there was a corresponding reduction in the contents of free radicals and MDA. These findings indicated that supplementation with selenium, copper and magnesium elevated high fluoride bovine antioxidant enzymes, and decreased MDA and free radicals contents. But, the activities of supplementation selenium group did not increase until day 83. These results demonstrated that fluorosis was associated with lower serum Se and Cu levels than in the control, and it was therefore concluded that fluorosis is associated with decreased serum levels of these minerals. Long-term high fluoride intake under productive condition enhances oxidative stress in the blood, thereby disturbing the antioxidant defense of cattle. Increased oxidative stress could be one of the mediating factors in the pathogenesis of toxic manifestations of fluoride. It is benefical for high fluoride cattle supplemented with proper selenium, copper and magnesium to increase fluoride excretion and obtain the protective impact of the activity of oxidative enzymes, and to decrease lipid peroxidation and free radicals contents.

Effect of Copper Supplementation on Mineral Utilizations in Rats (흰쥐에 있어 구리 보충이 무기질 대사에 미치는 양향)

  • 최며경;전예숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1124-1130
    • /
    • 1999
  • The purpose of this study was to investigate the effect of copper supplementation on mineral utilizations in rats. Intakes, excretions, and tissue levels of Fe, Zn, Cu, Ca, Mg, Na, K were compared in rats fed diet with 100, 200, 400% of copper requirement(1Cu, 2Cu and 4Cu, respectively) for 6 weeks. The feed intake was significantly higher in 2Cu compared to 1Cu group, however, body weight gain was not significantly different among the three groups. While the serum level of Fe was significantly decreased, that of Cu was significantly elevated by Cu supplementation. The liver and kidney levels of Mg and Na, intakes of all the minerals, urinary excretions of Fe, Cu, Ca and Mg were significantly higher in 2Cu and/or 4Cu compared to 1Cu. The fecal excretions, retentions and absorptions of all the minerals were not affected by Cu supple mentation. In summary, these results suggest that dietary Cu supplementation has no effect on mineral utilizations, but effect on distribution in tissues of rats.

  • PDF

Effects of Supplementary Copper Chelates in the Form of Methionine, Chitosan and Yeast on the Performance of Broilers

  • Lim, H.S.;Paik, I.K.;Sohn, T.I.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1322-1327
    • /
    • 2006
  • An experiment was conducted to investigate the effects of supplemental copper (Cu) chelates (methionine, chitosan and yeast) on the performance, nutrient digestibility, serum IgG level, gizzard erosion, Cu content in the liver and excreta and the level of total cholesterol in breast muscle and serum of broiler chickens. Two hundred and forty hatched broiler chickens (Ross$^{(R)}$ 208) were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu in chitosan chelate (Chitosan-Cu) and 100 ppm Cu in yeast chelate (Yeast-Cu). Each treatment had six replicates of 10 (5 males+5 females) birds each. Weight gain and feed intake tended to be higher in Cu chelate treatments than the control; weight gain was significantly higher in the Met-Cu chelate treatment and feed intake was significantly higher in the Yeast-Cu chelate treatment than the control (p<0.05). Feed/gain was significantly different between treatments in which Met-Cu was lowest followed by the control, Chitosan-Cu and Yeast-Cu. DM availability was increased by Cu chelates among which chitosan-Cu showed the highest DM availability. Cu chelates supplementation tended to increase gizzard erosion index, and Cu content in the liver was highest in the Met-Cu treatment. Supplementation of Cu chelates tended to decrease total cholesterol level in breast muscle and serum but tended to increase the level of HDL in serum. It was concluded that dietary supplementation of 100 ppm Cu in chelates increased weight gain, feed intake and DM availability. Met-Cu was more effective than Chitosan-Cu or Yeast-Cu in improving productivity of broiler chickens.

Effect of Zinc on Vascular Smooth Muscle Cell Death Mediated by PDTC

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.40-43
    • /
    • 2000
  • Pyrrolidinedithiocarbamate (PDTC) and N-Acetylcysteine (NAC) are metal and nonmetal-chelating antioxidant which can induce rat and human smooth muscle cell death. When the smooth muscle cells from mouse aorta (MASMC) that we successfully cultured recently was exposed to PDTC and NAC in a normal serum state, the cells were induced to death by these compounds. However, PDTC did not induce the cell death in a serum depleted medium. This data suggests that certain factors in the serum may mediate the cytotoxic effect of PDTC. The metal chelator, Ca-EDTA blocked PDTC-induced cell death, but Cu-, Fe-, and Zn-EDTA did not block the PDTC-induced cell death. This data indicated that copper, iron, and zinc in the serum may lead to the cytotoxic effect of PDTC. Investigation of the intracellular zinc level in PDTC-induced smooth muscle cell death using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide shows that only the muscle-containing layers of the arteries have higher level of zinc. As expected, PDTC increased the intracellular fluorescence level of the zinc. In agreement with these results, the addition of an exogenous metal, zinc, induced the vascular aortic smooth muscle cell death which led to an increased intracellular zinc level. We concluded that PDTC induced mouse aortic smooth muscle cell death required not only zinc level but also intracellular copper and iron level. The mechanism of this antioxidant to induce vascular smooth muscle cell death may provide a new strategy to prevent their proliferation in arteriosclerotic lesions.

  • PDF

Nutritional and Health status of Korean Elderly form Low-Income, Urban Area and Improving Effect of meal Service on Nutritional and Health Status -IV. The Effect of Meal Serivice on Mineral Status and Clinical symptoms- (도시 저소득층 노인들의 영양 및 건강상태 조사와 급식이 노인들의 영양 및 건강 상태의 개선에 미치는 영향 -IV. 급식이 도시 저소득층 노인들의 무기질 영양 상태 및 임상 증상에 미치는 영향-)

  • 손숙미;박양자;구재옥;김숙배;이경신;윤혜영
    • Korean Journal of Community Nutrition
    • /
    • v.1 no.3
    • /
    • pp.395-404
    • /
    • 1996
  • The effect of meal service for home-staying, urban elderly with low income on their mineral status and prevalence of clinical symptoms was evaluated. One hundred. One hundred and eighty three subjects were assigned to meal-served(served) and non-served(non-served)groups. A meal containing approximately one half of the RDA for energy, protein, calcium and iron was served as lunch every day to served group at a welfare center. Dietary, biochemical and clinical data were collected before and after 6 months of meal service and the changes of parameters were analyzed with paired t-test. served female showed significantly increased intake of calcium. The mean hemoglobin, serum iron, TIBC and serum copper of female were significantly increase with meal service. The proportion of anemic female compared to reference data on hemoglobin, hematocrit and serum iron were 45.5$\%$, 29.1$\%$ and 16.4$\%$ respectively, but were lowered to 18.2$\%$, 7.3$\%$, and 5.5$\%$ after 6 months of meal service. served male showed significant increase in MCHC, serum copper, and urinary Na. The urinary Ca/Creatinine, which is often used as an index of bone resorption, was decreased significantly in served group. The decrease in the proportion of served women suffering from edema of ankle and diarrhea was most apparent and less women reported feeling clinical symptoms of dizziness, constipation, difficulty in hearing, and coughing after meal service. The symptoms of benumbness of hands and feet and coughing was lowered most among men after meal service. Clinical symptoms of non-served elderly did not show improvement in feeling clinical symptoms except slightly decreased frequency in coughing of female and buzzing sound in the ears and diarrhea of male.

  • PDF

Mineral Intakes and Serum Mineral Concentrations of the Pregnant and Lactating Women (임신$\cdot$수유부의 무기질 섭취와 혈청 무기질 함량에 관한 연구)

  • Kim Wooo Ju;Ahn Hong Seok;Chung Eun Jung
    • Korean Journal of Community Nutrition
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2005
  • The purpose of this study was to estimate the mineral intakes and serum mineral levels of pregnant and lactating women. The subjects consisted of 34 non-pregnant, 56 pregnant and 20 lactating women. Nutrients intakes were investigated by the 24-hr recall method, and serum major and trace minerals were analyzed by the ICP-spectrometry. Calcium (Ca) and zinc (Zn) intakes were observed lower than RDA especially for both pregnant and lactating women. Iron (Fe) intake of pregnant women was $85 - 139\%$ RDA through Fe supplementation, and that of lactating women was lower than RDA. Compared with non-pregnant women, the pregnant women had similar Ca intake and higher magnesium (Mg) intake. Comparing with the non-pregnant women, serum Ca level in pregnancy was lower, and that of lactating women was not significantly different. Serum phosphorus and Mg levels were not significantly different among the groups. Serum Fe level of pregnant and lactating women was lower than that of the non-pregnant women. Serum Zn level of pregnant women was lower than those in the lactating and non-pregnant women. Serum copper level decreased as the pregnancy progressed. Serum sodium (Na) level was higher in 2nd- and 3rd trimester and potassium (K) level was higher in 3rd trimester and lactating period than other groups. Na/K ratio was not significantly different among the groups. During all periods, there was no correlation between dietary intakes and serum levels in each minerals. Serum Ca level positively corrleated with serum Mg level, especially in 3rd trimester and lactating women. In general, serum mineral levels in pregnancy were changed compared to the levels in non-pregnancy and restored in lactation to the levels for non-pregnancy.

Changes of Serum Mineral Concentrations in Horses during Exercise

  • Inoue, Y.;Osawa, T.;Matsui, A.;Asai, Y.;Murakami, Y.;Matsui, T.;Yano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.531-536
    • /
    • 2002
  • We investigated the exercise-induced changes in the serum concentration of several minerals in horses. Four welltrained Thoroughbred horses performed exercise for 5 d. The blood hemoglobin (Hb) concentration increased during exercise, recovered to the pre-exercise level immediately after cooling down and did not change again up till the end of experiment. The changes in serum zinc (Zn) and copper (Cu) concentrations were similar to those of blood Hb during the experiment. The serum magnesium (Mg), inorganic phosphorus (Pi) and iron (Fe) concentrations also increased during exercise. Though the serum Pi concentration recovered to the pre-exercise level immediately after the cooling down, it decreased further before the end of the experiment. The serum Mg concentration was lower immediately after cooling down than its pre-exercise level but gradually recovered from the temporal reduction. The recovery of the serum Fe concentration was delayed compared to that of other minerals and recovered 2 h after cooling down. The serum calcium (Ca) concentration did not change during exercise but rapidly decreased after cooling down. As a result, it was lower immediately after cooling down than its pre-exercise level. It recovered, however, to the pre-exercise level 2 h after cooling down. The temporal increase in the serum concentrations of all minerals except Ca is considered to result from hemoconcentration induced by exercise and the stable concentration of the serum Ca during exercise is possibly due to its strict regulation of homeostasis. These results indicate that the serum concentration of each mineral responds differently to exercise in horses, which may be due to the difference in metabolism among these minerals.