• Title/Summary/Keyword: Serine/threonine

Search Result 397, Processing Time 0.027 seconds

Cloning of the Gene for Na$^{+}$/Serine-Threonine Symporter (sstT) from Haemophilus influenzae Rd and Characteristics of the Transporter

  • Kim, Young-Mog
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.202-206
    • /
    • 2003
  • A protein, exhibiting a high similarity to the major serine transporter of Escherichia coli, SstT, was found in Haemophilus influenzae Rd. A Na$\^$+/-stimulated serine transport activity was also detected in the cells. The gene (sstT) for the Na$\^$+//serine symporter from the chromosome of H. influenzae was cloned, and the properties of the transporter investigated. The serine transport activity was stimulated by Na$\^$+/. The uptake of Na$\^$+/ was elicited by the addition of serine or threonine into the cells, supporting the idea that these amino acids are transported by a mechanism of Na$\^$+//substrate symport. No uptake of H$\^$+/ was elicited by the influx of serine. The serine transport via the SstT of H. influenzae was inhibited by excess threonine, which was used as another substrate. The $K_{m}$ and the $V_{max}$ values for the serine transport were 2.5 ${\mu}$M and 14 nmol/min/mg protein, respectively.

Producyion of Threonine Using Methanol Dehydrogenase and Serine Hydroxyltransferase in a New Methylotrophic Bacterium KJ29 (New Methylotrophic Bacterium KJ29의 Methanol Dehydrogenase와 Serine Hydroxymethyltransferase를 이용한 Threonine의 생산에 관한 연구)

  • 김경자
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.577-581
    • /
    • 1993
  • The amino acid threonine was produced from glycine and ethanol in a reaction mixture using cell free extract of the methylotrophic bacterium isolated from soil and identified as mellthylo-bacterium sp. KJ29. Although the isolate could grow on carbon source other than methanol, only the cell free extract from the cells grown on methanol produced threonine. Methanol dehydrogenase (MDH) activity was present only in the cells grown on methanol when compared to the cells grown on heterotrophic substrates.

  • PDF

Identification of Protein Kinases by Anti-phosphoserine/Phosphothreonine/Phosphotyrosine Antibody Immunoaffinity Column Chromatographies in Streptomyces griseus. (Anti-Phosphoserine/Phosphothreonine/Phesphotyrosine Antibody Immunoaffinity Column Chromatography를 이용한 Streptomyces griseus의 인산화 단백질 동정)

  • Cheong, Yong-Hoon;Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • Protein kinases play very important role for maintaining viability in prokaryote and eukaryote. The metabolism of prokaryotic cell is generally regulated by bacterial two-component regulatory systems that are composed of histidine and asparitic acid kinases, however, some eukaryotic signal transduction system such as, serine and threonine kinases, have been also found to be involved in the regulation of morphogenesis and physiological differentiation in Streptomyces. Streptomyces griseus, a streptomycin producer, was expected to have varlous types of eukaryotic-type serine/threonine protein kinases, controlling morphogenesis. Thus, many steps of chromatographies were applied to isolate serine and threonine kinases from S. griseus IFO13350. The immunoaffinity steps using anti-phosphoserine, anti-phosphothreonine, and anti-phosphotyrosine agarose column chramatographies were successfully introduced to identify eukaryotic protein kinases from S. griseus IFO13350. Eight proteins with the expected molecular weight of 14, 29, 31, 35, 40, 52, 56, and 60 kDa, were identified on SDS-PAGE, and the their kination activity was confirmed by nonradioactive protein kination assay using FITC-labeled peptide as the substrate.

A Study of Specific Amino acid Characteristics on the Blood in Four Type of Physical Constitution (체질(體質)에 따른 혈중(血中) Amino acid 특성(特性)에 관(關)한 연구(硏究))

  • Yeun, Hong-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.13 no.2
    • /
    • pp.126-133
    • /
    • 1992
  • Comparative amino acid quantities on the blood analysis was carried out to investigate the amino acid specific characters on the blood in four type of physical constitution 1. In TAE-EUM-IN group, compared with control group, the proline and the serine were more observed. 2. In SO-EUM-IN group, compared with control group, the aspartic acid was more observed. 3. In SO-YANG-IN group, compared with control group, the proline was more observed. but the threonine and the aspartic acid were less observed. 4. In SO-EUM-IN group, compared with TAE-EUM-IN group, the aspartic acid and the serine were more observed. 5. In SO-YANG-IN group, compared with TAE-EUM-IN group, the serine and the proline were more observed, but the glutamic acid and the threonine were less observed. 6. In SO-YANG-IN group, compared with SO-EUM-IN group, the threonine and the aspartic acid were less observed.

  • PDF

A Generic Time-resolved Fluorescence Assay for Serine/threonine Kinase Activity: Application to Cdc7/Dbf4

  • Xu, Kui;Stern, Alvin S.;Levin, Wayne;Chua, Anne;Vassilev, Lyubomir T.
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.421-425
    • /
    • 2003
  • The serine/threonine protein kinase family is a large and diverse group of enzymes that are involved in the regulation of multiple cellular pathways. Elevated kinase activity has been implicated in many diseases and frequently targeted for the development of pharmacological inhibitors. Therefore, non-radioactive antibody-based kinase assays that allow high throughput screening of compound libraries have been developed. However, they require a generation of antibodies against the phosphorylated form of a specific substrate. We report here a time-resolved fluorescence assay platform that utilizes a commercially-available generic anti-phosphothreonine antibody and permits assaying kinases that are able to phosporylate threonin residues on protein substrates. Using this approach, we developed an assay for Cdc7/Dbf4 kinase activity, determined the $K_m$ for ATP, and identified rottlerin as a non-ATP competitive inhibitor of this enzyme.

Simulation Study of Dynamic Network Model for L-Threonine Biosynthesis in Escherichia coli (대장균의 동역학 네트워크 모델을 이용한 L-threonine 생합성에 관한 모사 연구)

  • Jung, Uisub;Lee, Jinwon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • In order to investigate the effect of inhibitors on L-threonine biosynthesis in Escherichia coli, we have constructed a metabolic network model of amino acid biosynthesis from L-aspartate to L-threonine by using available informations from literatures and databases. In the model, the effects of inhibitors on the biosynthesis of L-threonine was included as an appropriate mathematical form. For simulation study, we used initial values as L-aspartate 5 mM, ATP 5 mM, NADPH 2 mM, and observed the concentration changes of intermediate metabolites over concentration changes of respective inhibitors. As a result, we found that concentrations of intermediate metabolites were not significantly changed over concentration changes of L-lysine, L-methionine, and L-glutamate. But, there were considerable changes of intermediates over concentration changes of L-serine, L-cysteine, and L-threonine, which can be considered as essential effectors on L-threonine synthesis. Contrary, the synthesis of L-threonine seems to be not related to the amounts of L-aspartate, and inversely proportional to the accumulated amount of D,L-aspartic ${\beta}$-semialdehyde.

Biotechnology for the Production of Threonine Production (Threonine의 생물공학적 생산)

  • Kim, Kyoung-Ja
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.447-456
    • /
    • 1990
  • Various methods are available for the production of L-threonine. The microbial production of L-threonine has been achieved by breeding L-threonine analog-resistant auxotrophic mutants of various bacteria. The enzymatic production of L-threonine has been demonstrated by use of threonine metabolic enzymes such as threonine deaminase, threonine aldolase, or threonine dehydrogenase complex. Threonine synthesis from glycine and ethanol seems to be catalyzed by the enzymes Methanol dehydrogenase(MDH) and Serine hydroxymethyltransferase(SHMT), which was also found to catalyze the aldol condensation of glycine with acetaldehyde. The improved production of L-threonine has been achieved by amplifying the genes for the L-threonine biosynthetic enzymes using recombinant DNA techniques.

  • PDF

Chemical Modification of the Biodegradative Threonine Dehydratase from Serratia marcescens with Arginine and Lysine Modification Reagents

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 1995
  • Biodegradative threonine dehydratase purified from Serratia marcescens ATCC 25419 was inactivated by the arginine specific modification reagent, phenylglyoxal (PGO) and the lysine modification reagent, pyridoxal 5'-phosphate (PLP). The inactivation by PGO was protected by L-threonine and L-serine. The second order rate constant for the inactivation of the enzyme by PGO was calculated to be 136 $M^{-1}min^{-1}$. The reaction order with respect to PGO was 0.83. The inactivation of the enzyme by PGO was reversed upon addition of excess hydroxylamine. The inactivation of the enzyme by PLP was protected by L-threonine, L-serine, and a-aminobutyrate. The second order rate constant for the inactivation of the enzyme by PLP was 157 $M^{-1}min^{-1}$ and the order of reaction with respect to PLP was 1.0. The inactivation of the enzyme by PLP was reversed upon addition of excess acetic anhydride. Other chemical modification reagents such as N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoate), iodoacetamide, sodium azide, phenylmethyl sulfonylfluoride and diethylpyrocarbonate had no effect on the enzyme activity. These results suggest that essential arginine and lysine residues may be located at or near the active site.

  • PDF

Molecular Characterization of a Protein Kinase Gene in Chiness Cabbage(Brassica campestrics subsp. napus var. pekinensis)

  • Jeong, Sang-Ho;Ahn, Ji-Hoon;Lee, June-Seung;Lee, Jong-Seob
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 1997
  • Random sequencing of expressed sequence tags in roots of Chinese cabbage led to isolation of a partial cDNA clone, BR77, which encoded a putative protein kinase. Using the BR77 cDNA as a probe, we isolated a full-length cDNA encoding the Brassica campestris protein kinase 1 (Bcpk1). The Bcpt1 cDNA contained one open reading frame encoding a polypeptide of 439 amino acids. The putative polypeptide consisted of a short N-terminal region and a protein kinase catalytic domain. The catalytic domain of Bcpkl showed a high homology to cAMP- and calcium- phospholipid-dependent subfamilies of serine/threonine protein kineses. Eleven major catalytic domains in protein kineses were well conserved in Bcpk1. However, Bcpk1 contained a unique nonhomologous intervening sequence between subdomains VII and VIII, which was not found in protein kineses of animals and lower eukaryotes. Genomic DNA gel blot analysis showed that Bcpt1 genes might be present as three copies in the Chinese cabbage genome. These imply that Bcpk1 belongs to a plant-specific serine/threonine protein kinase subfamily.

  • PDF