• 제목/요약/키워드: Series-connected switches

검색결과 51건 처리시간 0.023초

Short-circuit Protection for the Series-Connected Switches in High Voltage Applications

  • Tu Vo, Nguyen Qui;Choi, Hyun-Chul;Lee, Chang-Hee
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1298-1305
    • /
    • 2016
  • This paper presents the development of a short-circuit protection mechanism on a high voltage switch (HVS) board which is built by a series connection of semiconductor switches. The HVS board is able to quickly detect and limit the peak fault current before the signal board triggers off a gate signal. Voltage clamping techniques are used to safely turn off the short-circuit current and to prevent overvoltage of the series-connected switches. The selection method of the main devices and the development of the HVS board are described in detail. Experimental results have demonstrated that the HVS board is capable of withstanding a short-circuit current at a rated voltage of 10kV without a di/dt slowing down inductor. The corresponding short-circuit current is restricted to 125 A within 100 ns and can safely turn off within 120 ns.

간단한 보조회로를 이용한 새로운 IGBT 직렬 구동 기법에 관한 연구 (The study on novel method of IGBTs series connection using simple auxiliary circuit)

  • 백주원;류명효;김성철;이영식;유동욱;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.206-209
    • /
    • 1999
  • There exists an acute need for high voltage solid-state-switches in a broad area of applications. With the proposed method using simple voltage balancing circuit with series connected IGBTs, it is realized high voltage semiconductor switches with working voltages of several order kilo-volts. The operation principle of the proposed circuit is explained and analyzed. Transient and static voltage-balancing is tested on a experimenta 3kV/45A switch with four series-connected IGBTs.

  • PDF

Analysis, Design and Implementation of an Interleaved DC/DC Converter with Series-Connected Transformers

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.643-653
    • /
    • 2012
  • An interleaved DC/DC converter with series-connected transformers is presented to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two half-bridge converter cells connected in series to reduce the voltage stress of the switches at one-half of the input voltage. The output sides of the two converter cells with interleaved pulse-width modulation are connected in parallel to reduce the ripple current at the output capacitor and to achieve load current sharing. Therefore, the size of the output chokes and the capacitor can be reduced. The output capacitances of the MOSFETs and the resonant inductances are resonant at the transition instant to achieve ZVS turn-on. In addition, the switching losses on the power switches are reduced. Finally, experiments on a laboratory prototype (24V/40A) are provided to demonstrate the performance of the proposed converter.

Implementation of a ZVS Three-Level Converter with Series-Connected Transformers

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2013
  • This paper studies a soft switching DC/DC converter to achieve zero voltage switching (ZVS) for all switches under a wide range of load condition and input voltage. Two three-level PWM circuits with the same power switches are adopted to reduce the voltage stress of MOSFETs at $V_{in}/2$ and achieve load current sharing. Thus, the current stress and power rating of power semiconductors at the secondary side are reduced. The series-connected transformers are adopted in each three-level circuit. Each transformer can be operated as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer from the input side to the output side. Therefore, no output inductor is needed at the secondary side. Two center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Due to the resonant behavior by the resonant inductance and resonant capacitance at the transition interval, all switches are turned on at ZVS. Experiments based on a 1kW prototype are provided to verify the performance of proposed converter.

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.375-382
    • /
    • 2018
  • A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.

직렬 연결된 SiC MOSFET의 전압 평형을 위한 새로운 능동 게이트 구동 기법 (A New Gate Driver Technique for Voltage Balancing in Series-Connected Switching Devices)

  • 손명수;조영훈
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2022
  • The series-connected semiconductor devices structure is one way to achieve a high voltage rating. However, a problem with voltage imbalance exists in which different voltages are applied to the series-connected switches. This paper proposed a new voltage balancing technique that controls the turn-off delay time of the switch by adding one bipolar junction transistor to the gate turn-off path. The validity of the proposed method is proved through simulation and experiment. The proposed active gate driver not only enables voltage balancing across a variety of current ranges but also has a greater voltage balancing performance compared with conventional RC snubber methods.

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

Mitigation of Voltage Sag and Swell Using Direct Converters with Minimum Switch Count

  • Abuthahir, Abdul Rahman Syed;Periasamy, Somasundaram;Arumugam, Janakiraman Panapakkam
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1314-1321
    • /
    • 2014
  • A new simplified topology for a dynamic voltage restorer (DVR) based on direct converter with a reduced number of switches is presented. The direct converter is fabricated using only three bi-directional controlled switches. The direct converter is connected between the grid and center-tapped series transformer. The center-tapped series transformer is used to inject the compensating voltage synthesized by the direct converter. The DVR can properly compensate for long-duration, balanced, and unbalanced voltage sag and swell by taking power from the grid. The switches are driven by ordinary pulse width modulation signals. Simulation and hardware results validate the idea that the proposed topology can mitigate sag of 50% and swell of unlimited quantity.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.