• Title/Summary/Keyword: Series-Parallel

Search Result 968, Processing Time 0.031 seconds

Etching of Pt Thin Film for SAW Filter Fabrication (표면탄성파 필터 제작을 위한 Pt 박막 식각)

  • Choi, Yong-Hee;Song, Ho-Young;Park, Se-Geun;Lee, Taek-Joo;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.103-107
    • /
    • 2003
  • The inductively coupled plasma(ICP) etching process was selected to fabricate RF Surface Acoustic Wave(SAW) filters and a Pt thin film was sputtered on a $LiTaO_3$ substrate applied to electrode materials to reduce the spurious response and improve the power durability. Steep sidewall pattern was achieved employing $C_4F_8/Ar/Cl_2$ gas chemistry. We investigated an etching mechanism and parameter dependence of the Pt thin film about $C_4F_8$ addition. Sidewall etch angle was about $80^{\circ}$ at the $C_4F_8$ 20% mixing ratio. Fabricated SAW filter is consists of some series and parallel arm SAW resonators which work as impedance elements and show capacitance characteristics at out of the passband. It can be modified for $800{\sim}900\;MHz$ RF filters. External matching circuits were unnecessary.

  • PDF

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

Karyotype of Fasciola sp. Obtained from Korean Cattle (한국산 간질의 핵형분석)

  • Lee, Jae-Gu;Eun, Gil-Su;Lee, Sang-Bok
    • Parasites, Hosts and Diseases
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 1987
  • As a series of systematic classification for Korean common liver fluke, Fasciola sp., karyotype was investigated by means of the modified air-drying technique and of the regular Giemsa staining. Also, C-staining method was applied for detailed karyological analysis from the germ cells of the fluke. The following is a brief summary of the leading facts gained through the experiment. 1. Korean Pasciola sp. was classified into three types based on their chromosomal complements; individuals with 20 or 30 chromosomes and with a 20/30 mosaic constitution. Worms having 30 chromosomes represent a triploid form with 3 sets of 10 basic chromosomes, while those with 20 chromosomes were diploid and mosaic individuals were 2n/3n mixoploid. 2. The frequency of the individual type calculated is as follows; 67.45% of 212 flukes examined was of diploid, 10.85%, triploid, and the rest, 21.7%, mixoploid, respectively. In many cases, two or three types were found in the peculiar bovine host while single type inhabitant was about 20% out of 52 cases. 3. The twenty chromosomes consisted of 1 pair of large metacentrics, 4 pairs of medium-sized subtelocentrics, and 5 pairs of small submetacentrics, while constitution of the thirty chromosomes was nearly interpreted as a triploid form with 3 sets of 10 basic chromosomes. The high centromeric indexes of both types are the first Pairs among all the examined, and 37.93% was of diploid and 47.93%, triploid, respectively. 4. In mixoploid individuals, constitution of the chromosomes of diploid or triploid cells was the same as that of diploid or triploid individuals. 5. All the chromosomes of the germ cells in both types showed C-band around the centromeric region and especially the chromosomes no's 3,7, and 8 showed a remarkable C-band distinguished from other chromosomes. 6. The variance for the sizes of the worms and the eggs were not parallel with three different genotypes in Korean common liver fluke.

  • PDF

A Design of a Distributed Computing Problem Solving Environment for Dietary Data Analysis (식이 데이터 분석을 위한 분산 컴퓨팅 문제풀이환경 설계)

  • Choi, Jieun;Ahn, Younsun;Kim, Yoonhee
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.834-839
    • /
    • 2015
  • Recently, wellness has become an issue related to improvements in personal health and quality of life. Data that are accumulated daily, such as meals and momentum records, in addition to body measurement information such as body weight, BMI and blood pressure have been used to analyze the personal health data of an individual. Therefore, it has become possible to prevent potential disease and to analyze dietary or exercise patterns. In terms of food and nutrition, analyses are performed to evaluate the health status of an individual using dietary data. However, it is very difficult to process the large amount of dietary data. An analysis of dietary data includes four steps, and each step contains a series of iterative tasks that are executed over a long time. This paper proposes a problem solving environment that automates dietary data analysis, and the proposed framework increases the speed with which an experiment can be conducted.

Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation (수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구)

  • Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong;Min, Cheon-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.

ASSESSMENT OF CFD CODES USED IN NUCLEAR REACTOR SAFETY SIMULATIONS

  • Smith, Brian L.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.339-364
    • /
    • 2010
  • Following a joint OECD/NEA-IAEA-sponsored meeting to define the current role and future perspectives of the application of Computational Fluid Dynamics (CFD) to nuclear reactor safety problems, three Writing Groups were created, under the auspices of the NEA working group WGAMA, to produce state-of-the-art reports on different aspects of the subject. The work of the second group, WG2, was to document the existing assessment databases for CFD simulation in the context of Nuclear Reactor Safety (NRS) analysis, to gain a measure of the degree of quality and trust in CFD as a numerical analysis tool, and to take initiatives to extend the existing databases. The group worked over the period of 2003-2007 and produced a final state-of-the-art report. The present paper summarises the material gathered during the study, illustrating the points with a few highlights. A total of 22 safety issues were identified for which the application of CFD was considered to potentially bring real benefits in terms of better understanding and increased safety. A list of the existing databases was drawn up and synthesised, both from the nuclear area and from other parallel, non-nuclear, industrial activities. The gaps in the technology base were also identified and discussed. In order to initiate new ways of bringing experimentalists and numerical analysts together, an international workshop -- CFD4NRS (the first in a series) -- was organised, a new blind benchmark activity was set up based on turbulent mixing in T-junctions, and a Wiki-type web portal was created to offer online access to the material put together by the group giving the reader the opportunity to update and extend the contents to keep the information source topical and dynamic.

Parallelization and application of SACOS for whole core thermal-hydraulic analysis

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Wang, Mingjun;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3902-3909
    • /
    • 2021
  • SACOS series of subchannel analysis codes have been developed by XJTU-NuTheL for many years and are being used for the thermal-hydraulic safety analysis of various reactor cores. To achieve fine whole core pin-level analysis, the input preprocessing and parallel capabilities of the code have been developed in this study. Preprocessing is suitable for modeling rectangular and hexagonal assemblies with less error-prone input; parallelization is established based on the domain decomposition method with the hybrid of MPI and OpenMP. For domain decomposition, a more flexible method has been proposed which can determine the appropriate task division of the core domain according to the number of processors of the server. By performing the calculation time evaluation for the several PWR assembly problems, the code parallelization has been successfully verified with different number of processors. Subsequent analysis results for rectangular- and hexagonal-assembly core imply that the code can be used to model and perform pin-level core safety analysis with acceptable computational efficiency.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Design of acoustic meta-material silencer based on coiled up space (지그재그 구조 메타물질을 이용한 음향 소음기 설계)

  • Shim, Ki-Hwoon;Jang, Jun-Young;Kwon, Ho-Jin;Song, Kyungjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.