• Title/Summary/Keyword: Series-Parallel

Search Result 968, Processing Time 0.032 seconds

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Studies on the Application of Unit-inverter Parallel Operation to Sea-water Lift Pump in Power Plant (단위 인버터 병렬운전에 의한 발전소 해수펌크 적용)

  • 김수열;류홍우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Due to the increase in capacity of auxiliary machinery in power plant, the importance of energy saving has been greatly emphasized. If the speed of fans or pumps is controlled in accordance with the variation of load, large electric energy can be saved. Large capacity inverter, 2MVA GTO inverter, has been developed by operating two of 1MVA unit inverters in parallel. The parallel operation of the unit inverter is accomplished through two output transformers of which the secondary windings are connected in series. The system is composed of one control cubicle, one rectifier cubicle and 2 unit inverter cubicles. This inverter system was applied to the sea water lift pump(SLP) driven by a 6.6KV 1500KW induction motor in Seo-Inchon power plant to save the electric energy. The parallel operation of inverters by 180 degrees apart in switching frequency helps to reduce the harmonic components.

An XPDL-Based Workflow Control-Structure and Data-Sequence Analyzer

  • Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1702-1721
    • /
    • 2019
  • A workflow process (or business process) management system helps to define, execute, monitor and manage workflow models deployed on a workflow-supported enterprise, and the system is compartmentalized into a modeling subsystem and an enacting subsystem, in general. The modeling subsystem's functionality is to discover and analyze workflow models via a theoretical modeling methodology like ICN, to graphically define them via a graphical representation notation like BPMN, and to systematically deploy those graphically defined models onto the enacting subsystem by transforming into their textual models represented by a standardized workflow process definition language like XPDL. Before deploying those defined workflow models, it is very important to inspect its syntactical correctness as well as its structural properness to minimize the loss of effectiveness and the depreciation of efficiency in managing the corresponding workflow models. In this paper, we are particularly interested in verifying very large-scale and massively parallel workflow models, and so we need a sophisticated analyzer to automatically analyze those specialized and complex styles of workflow models. One of the sophisticated analyzers devised in this paper is able to analyze not only the structural complexity but also the data-sequence complexity, especially. The structural complexity is based upon combinational usages of those control-structure constructs such as subprocesses, exclusive-OR, parallel-AND and iterative-LOOP primitives with preserving matched pairing and proper nesting properties, whereas the data-sequence complexity is based upon combinational usages of those relevant data repositories such as data definition sequences and data use sequences. Through the devised and implemented analyzer in this paper, we are able eventually to achieve the systematic verifications of the syntactical correctness as well as the effective validation of the structural properness on those complicate and large-scale styles of workflow models. As an experimental study, we apply the implemented analyzer to an exemplary large-scale and massively parallel workflow process model, the Large Bank Transaction Workflow Process Model, and show the structural complexity analysis results via a series of operational screens captured from the implemented analyzer.

6.2~9.7 GHz Wideband Low-Noise Amplifier Using Series RLC Input Matching and Resistive Feedback (직렬 RLC 입력 정합 및 저항 궤환 회로를 이용한 6.2~9.7 GHz 광대역 저잡음 증폭기 설계)

  • Park, Ji An;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1098-1103
    • /
    • 2013
  • A low-noise amplifier(LNA) using series RLC matching network and resistive feedback at 8 GHz is presented. Inductive degeneration is used for the input matching with which the proposed LNA shows quite a wide bandwidth in terms of $S_{21}$. An equivalent circuit model is deduced for input matching by conversion from parallel circuit to series resonant circuit. By exploiting the resistive feedback and series RLC input matching, fully integrated LNA achieves maximum $S_{21}$ of 8.5 dB(peak to -3 dB bandwidth is about 3.5 GHz) noise figure of 5.9 dB, and IIP3 of 1.6 dBm while consuming 7 mA from 1.2 V supply.

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Design and Performance Analysis of Magnetic Resonant Wireless Power Transfer Receiver for Implant Medical Device (인체 삽입형 자기 공진 무선전력전송 수신기 설계 및 성능 분석)

  • Kim, Sungjae;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.935-941
    • /
    • 2018
  • In this study, we propose a suitable magnetic resonant wireless power transfer(WPT) system topology for size-limited implant medical devices(IMDs). The proposed modified series-parallel topology(mSPT) can be implemented by adding an inductor in series to the parallel-connected Rx coil and a capacitor. The topology achieves high efficiency when the Rx coil has a small inductance. The validity and operating conditions of the system are verified theoretically through circuit analysis. Experiments were conducted with bio-blocks, which are made of pork fat and muscle. When the Rx coils were inserted into the blocks at a depth of 2.5~10 mm, mSPT showed 17.79 % improved efficiency on average compared with the conventional series-series topology(SST). In the case of 32 dBm WPT in air, the Rx coil's heating rate for the mSPT was $0.18^{\circ}C/s$, whereas the SST was $0.75^{\circ}C/s$. It was confirmed that the mSPT is more suitable for an IMD-targeted WPT system.

An analysis on the characteristics of superheater organization of ORC system for marine waste heat recovery system(WHRS) (선박폐열회수(WHRS) ORC 시스템의 과열기 구성에 따른 특성 해석)

  • Kim, Jong-Kwon;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • This research designed Waste Heat Recovery System(WHRS) generation system of 250kW whose working fluid is R-245fa and studied on cycle characteristics by superheater organization. It simulated two conditions; series connection and parallel connection between superheater and evaporator. In simulation of series connection of superheater and evaporator, output of 4.7% could be improved because of the increase of enthalpy by overheating of working fluid. When setting 250kW for target output, cycle flux could be reduced by 4.1%. When setting 250kW as a target output of cycle In parallel connection simulation of superheater and evaporator, cycle flux was reduced as flux of heat source fluid for superheater was increased. So, the maximum 7.9% of working fluid pump's electric power was reduced and there was no big change in cycle efficiency and net efficiency by flux ratio.

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.