• 제목/요약/키워드: Series solutions

검색결과 564건 처리시간 0.031초

Fourier급수를 응용한 이계 선형 상미분방정식의 해석에 관한 연구 (A study on the solutions of the 2nd order linear ordinary differential equations using fourier series)

  • 왕지석;김기준;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.100-111
    • /
    • 1984
  • The methods solving the 2nd order linear ordinary differential equations of the form y"+H(x)y'+G(x)y=P(x) using Fourier series are presented in this paper. These methods are applied to the differential equations of which the exact solutions are known, and the solutions by Fourier series are compared with the exact solutions. The main results obtained in these studies are summarized as follows; 1) The product and the quotient of two functions expressed in Fourier series can be expressed also in Fourier series and the relations between the Fourier coefficients of the series are obtained by multiplying term by term. 2) If the solution of the 2nd order lindar ordinary differential equation exists in a certain interval, the solution can be obtained using Fourier series and can be expressed in Fourier series. 3) The absolute errors of Fourier series solutions are generally less in the center of the interval than in the end of the interval. 4) The more terms are considered in Fourier series solutions, the less the absolute errors.rors.

  • PDF

FUZZY SOLUTIONS OF ABEL DIFFERENTIAL EQUATIONS USING RESIDUAL POWER SERIES METHOD

  • N. NITHYADEVI;P. PRAKASH
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.71-82
    • /
    • 2023
  • In this article, we find the approximate solutions of Abel differential equation (ADE) with uncertainty using residual power series (RPS) method. This method helps to calculate the sequence of solutions of ADE. Finally, numerical illustrations demonstrate the applicability of the method.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

SERIES SOLUTIONS TO INITIAL-NEUMANN BOUNDARY VALUE PROBLEMS FOR PARABOLIC AND HYPERBOLIC EQUATIONS

  • Bougoffa, Lazhar;Al-Mazmumy, M.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.87-97
    • /
    • 2013
  • The purpose of this paper is to employ a new useful technique to solve the initial-Neumann boundary value problems for parabolic, hyperbolic and parabolic-hyperbolic equations and obtain a solution in form of infinite series. The results obtained indicate that this approach is indeed practical and efficient.

Series Solution of High Order Abel, Bernoulli, Chini and Riccati Equations

  • Henk, Koppelaar;Peyman, Nasehpour
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.729-736
    • /
    • 2022
  • To help solving intractable nonlinear evolution equations (NLEEs) of waves in the field of fluid dynamics we develop an algorithm to find new high order solutions of the class of Abel, Bernoulli, Chini and Riccati equations of the form y' = ayn + by + c, n > 1, with constant coefficients a, b, c. The role of this class of equations in NLEEs is explained in the introduction below. The basic algorithm to compute the coefficients of the power series solutions of the class, emerged long ago and is further developed in this paper. Practical application for hitherto unknown solutions is exemplified.

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.

축 대칭 지형 위를 전파하는 장파의 해석해 (Analytical Solution for Long Waves on Axis-Symmetric Topographies)

  • 정태화;이창훈;조용식;이진우
    • 대한토목학회논문집
    • /
    • 제28권4B호
    • /
    • pp.413-419
    • /
    • 2008
  • 본 연구에서는, 바닥의 수심이 반경의 임의 차수의 제곱 꼴로 표현되는 다양한 형태의 축 대칭 지형 위를 통과하는 장파의 해석해를 유도하였다. 첫 번째 지형은 둔덕 위에 원기둥 모양의 섬이 있는 경우이며 두 번째는 원형의 섬이 있는 경우이다. 해를 구하기 위하여 변수 분리법, Taylor 급수전개법 및 Frobenius 급수법을 사용하였다. 유도된 해석해를 기존에 유도된 해석해와 비교를 하여 그 정확성을 검증 하였다. 또한, 입사파의 주기, 둔덕의 반지름 및 차수를 가지는 경우에 대하여 분석하였다.

Stress field around axisymmetric partially supported cavities in elastic continuum-analytical solutions

  • Lukic, D.;Prokic, A.;Anagnosti, P.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.409-430
    • /
    • 2010
  • The present paper will be concerned to the investigation of the stress-strain field around the cavity that is loaded or partially loaded at the inner surface by the rotationally symmetric loading. The cavity of the spherical, cylindrical or elliptical shape is situated in a stressed elastic continuum, subjected to the gravitation field. As the contribution to the similar investigations, the paper introduces the new function of loading in the form of the infinite sine series. Besides, in this paper the solution of stresses around an oblong ellipsoid cavity, has been obtained using appropriate curvilinear elliptical coordinates. This analytical approach avoids the solutions of the same problem that lead to expressions that contain rather complex integrations. Thus the presented solutions provide the applicable and explicit expressions for stresses and strains developed in infinite series with easily determinable coefficients by the use of contemporary mathematical packages. The numerical examples are also included to confirm the convergence of the obtained solutions.

Biot수를 고려한 균일두께의 환상휜에서의 과도열전달에 관한 연구 (A Study on the Transient Heat Transfer in Annular Fin with Uniform Thickness Considering Biot Number)

  • 김광수
    • 대한설비공학회지:설비저널
    • /
    • 제14권2호
    • /
    • pp.138-149
    • /
    • 1985
  • The heat diffusion equation for an annular fin is analyzed using Laplace transformations. The fin has a uniform thickness with its edge heat loss and two temperature profiles at the base such as a step change in temperature or heat flux. To obtain the exact solutions for temperature distribution, this paper can detect the eigenvalues which satisfy the roots of transcendental equations in above two cases during inverse Laplace transformations. The exact solutions for temperature and heat flux are obtained with the infinite Series by dimensionless factors. The solutions are developed for small and large values of times. These series solutions converge rapidly for large values of time, but slowly for small.

  • PDF