The performance of Lean NOx Trap (LNT) based on the catalysts of Pt/K/Ba/$\gamma-Al_2O_3$ with proprietary washcoat formulation is studied using a bench flow reactor system. To investigate the effect of temperature and gas hourly space velocity (GHSV) on the nitrogen oxides (NOx) trapping capacity as well as NOx breakthrough time and final ratio of $NO_2$ to NO of LNT, series of adsorption isotherms are carried out with simulated exhaust gases of the lean burn engines. Since typical operation of LNT requires periodic regeneration with a short rich excursion, where the stored or trapped NOx is released and subsequently reduced to $N_2$, the effect of the duration of lean and rich phase and type of reductants on the NOx conversion is investigated. NOx storage capacity and breakthrough time obtained from adsorption isotherms shows a volcano-type dependence on the temperature with a maximum NOx storage capacity occurring $350^{\circ}C$ and with a maximum breakthrough time occurring $400^{\circ}C$ at all GHSVs investigated in this study. Also, maximum ratio of $NO_2$ to NO is obtained at $400^{\circ}C$ with a GHSV of $75,000\;hr^{-1}$ Lean/rich cycle of 100 s lean and 5 s rich used with a concentration of 1.33% of $H_2$ and 4% of CO in the rich phase is found to be optimum at operating temperature of $350^{\circ}C$ and a GHSV of $50,000\;hr^{-1}$.
Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.
Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
Nuclear Engineering and Technology
/
제45권3호
/
pp.323-334
/
2013
During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.
저온 플라즈마를 이용한 메탄 직접 전환반응은 진공에서 메탄만을 원료로 마이크로웨이브나 라디오 주파수(R.F)등의 에너지를 가하여 플라즈마 상태로 반응시켜 에틸렌, 에탄, 아세틸렌 등의 C2 화합물을 생성하는 방법이다. 이러한 직접적인 메탄 전환의 장점은 산소를 가하지 않으므로 산소에 의한 부생성물이 없는 점과 저온 플라즈마를 이용하므로 저에너지 공정이라는 것을 들 수 있다. 본 연구에서는 마이크로웨이브와 라디오 주파수(R.F)를 이용하여 저온 플라즈마 반응으로 메탄 전환반응을 수행하였고 일반적인 플라즈마 반응에 사용되는 관형반응기 외에도 독자적인 시리즈 반응기를 설계하여 성능실험을 수행하였다. 또한 플라즈마와 촉매를 이용한 반응실험을 수행 촉매의 영향을 확인하였다. 저온 플라즈마를 이용한 메탄 전환 반응의 특성을 분석한 자료는 공정의 실용화를 위한 반응기 설계 및 반응속도를 분석하기 위한 기초자료로 기대된다.
Reactor core transient calculation is very important for the reactor safety analysis, in which the kernel is neutron kinetics calculation by simulating the variation of neutron density or thermal power over time. Compared with the point kinetics method, the time-space neutron kinetics calculation can provide accurate variation of neutron density in both space and time domain. But it consumes a lot of resources. It is necessary to develop a surrogate model that can quickly obtain the temporal and spatial variation information of neutron density or power with acceptable calculation accuracy. This paper uses the time-varying characteristics of power to construct a time function, parameterizes the time-varying characteristics which contains the information about the spatial change of power. Thereby, the amount of targets to predict in the space domain is compressed. A surrogate method using the machine learning is proposed in this paper. In the construction of a neural network, the input is processed by a convolutional layer, followed by a fully connected layer or a deconvolution layer. For the problem of time sequence disturbance, a structure combining convolutional neural network and recurrent neural network is used. It is verified in the tests of a series of 1D, 2D and 3D reactor models. The predicted values obtained using the constructed neural network models in these tests are in good agreement with the reference values, showing the powerful potential of the surrogate models.
Flicker, also known as voltage fluctuation, is a newest problem of power quality issues, because it is caused by nonlinear loads such as electrical arc furnace and large-scale induction motor, which are country-widely used as the heavy industries of a country develop. An international standard, International Electrotechnical Commission (IEC) 61000-4-15, was published in 1997 and revised in 2003. With increasing concerns about flicker, its mitigation methods have been also studied. General countermeasures for flicker are divided into three categories: a) enhancing the capacity of supplying system, b) Series elements including series reactor and series capacitor and c) power electronic devices including static VAR compensator (SVC) and static synchronous compensator (STATCOM). This paper introduces how to mitigate the voltage flicker at the point of common coupling (PCC) and presents how to simulate and compare the flicker alleviating effects by each mitigation method, using IEC flickermeter based on the Matlab/Simulink program.
Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.
본 연구에서는 McVetty 와 Monkman-Grant 의 모델에 기초하여 만들어진 새로운 크리프 수명예측 모델인 Taylor 급수(T-S) 모델을 제안하였다. 본 모델은 회귀분석에서 발생하는 오차를 줄이기 위하여 McVetty 모델에서 sinh 함수를 Taylor 급수에 의해 변환한 후 첫 3 개항을 취한 것으로서 모델중의 상수 값은 통계학적 방법인 최대가능성 기법을 이용하여 결정되었다. T-S 모델을 이용하여 Alloy 617 의 크리프 수명을 예측한 결과 Eno, 지수함수 및 Larson-Miller(L-M) 방법에 비해 더 정확한 예측을 하는 것으로 나타났다. 또한 T-S 모델은 특정 온도에서 크리프 수명 예측을 할 수 있는 등온 T-S(IT-S) 모델로 표현될 수 있었으며, IT-S 모델은 Alloy 617 의 장시간 크리프 수명예측에서 가장 좋은 예측을 하는 것으로 나타났다.
본 연구에서는 CO, $H_2$가 주성분인 모사합성가스를 이용하여 합성천연가스(SNG, Synthetic Natural Gas) 제조공정을 평가하기 위하여, 3종류의 SNG 합성반응시스템을 제안하였다. 제시된 공정은 다단 단열반응시스템, 재순환이 있는 다단 단열반응시스템 그리고 강제냉각방식의 수냉각반응시스템이다. 3개의 연속된 반응기로 구성된 다단 단열반응시스템에서의 1차반응기에서는 온도가 최대 $800^{\circ}C$까지 상승하였으며, 이로 인한 수성가스전환반응으로 인해 $CO_2$가 다른 시스템에 비해 많이 생성되었으며, SNG 내의 $CH_4$ 농도는 90.1% 정도를 얻었다. 다단 단열반응시스템의 문제점을 해결하기 위해 재순환이 있는 다단 단열반응시스템에서는 반응기의 온도제어를 위해 일부 전환가스를 재순환한 것으로, $CH_4$는 최대 96.3%를 얻었다. 이러한 다수개의 반응기로 구성된 단열반응기의 단점을 해결하여 반응기 개수를 줄일 수 있는 쉘과 튜브 형태의 반응기로 구성된 강제냉각방식의 수냉각시스템에서는 쉘 측으로 냉각수를 공급하여 반응열을 흡수하는 형태로, 공급되는 냉각수의 유량과 압력에 의해 온도를 제어할 수 있다. 이 시스템에서는 최대 $CH_4$는 최대 99.2%를 얻었으며, 1차 반응기인 강제냉각방식의 수냉각반응기 출구에서의 97% 이상의 $CH_4$ 농도를 얻을 수 있음을 확인하였다.
Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.