DOI QR코드

DOI QR Code

Taylor 급수를 이용한 617 합금의 장시간 크리프 수명 예측

Taylor Series-Based Long-Term Creep-Life Prediction of Alloy 617

  • 발행 : 2010.04.01

초록

본 연구에서는 McVetty 와 Monkman-Grant 의 모델에 기초하여 만들어진 새로운 크리프 수명예측 모델인 Taylor 급수(T-S) 모델을 제안하였다. 본 모델은 회귀분석에서 발생하는 오차를 줄이기 위하여 McVetty 모델에서 sinh 함수를 Taylor 급수에 의해 변환한 후 첫 3 개항을 취한 것으로서 모델중의 상수 값은 통계학적 방법인 최대가능성 기법을 이용하여 결정되었다. T-S 모델을 이용하여 Alloy 617 의 크리프 수명을 예측한 결과 Eno, 지수함수 및 Larson-Miller(L-M) 방법에 비해 더 정확한 예측을 하는 것으로 나타났다. 또한 T-S 모델은 특정 온도에서 크리프 수명 예측을 할 수 있는 등온 T-S(IT-S) 모델로 표현될 수 있었으며, IT-S 모델은 Alloy 617 의 장시간 크리프 수명예측에서 가장 좋은 예측을 하는 것으로 나타났다.

In this study, a Taylor series (T-S) model based on the Arrhenius, McVetty, and Monkman-Grant equations was developed using a mathematical analysis. In order to reduce fitting errors, the McVetty equation was transformed by considering the first three terms of the Taylor series equation. The model parameters were accurately determined by a statistical technique of maximum likelihood estimation, and this model was applied to the creep data of alloy 617. The T-S model results showed better agreement with the experimental data than other models such as the Eno, exponential, and L-M models. In particular, the T-S model was converted into an isothermal Taylor series (IT-S) model that can predict the creep strength at a given temperature. It was identified that the estimations obtained using the converted ITS model was better than that obtained using the T-S model for predicting the long-term creep life of alloy 617.

키워드

참고문헌

  1. Kim, W. G., Yin, S. N., Ryu, W.S. and Yi, W., 2004, "Creep-life Prediction and Standard Error Analysis of Type 316LN Stainless by Time-Temperature Parametric Methods," Trans. of the KSME, A, Vol.29. No.1, pp.74-80. https://doi.org/10.3795/KSME-A.2005.29.1.074
  2. Lee, H. Y., Kim, Y. W. and Song, K. N., 2008, "Preliminary Application of the Draft Code Case for Alloy 617 for High Temperature Component," Journal of Mechanical Science and Technology, Vol. 22, pp. 856-863. https://doi.org/10.1007/s12206-008-0118-1
  3. Kim, W. G., Yin, S. N., Jung, I, H. and Kim, Y. w., 2008, "Modeling of a Long-term Creep Curve of Alloy 617 for a High Temperature Gas-cooled Reactor," Key Engineering Materials, Vols. 385-387, pp. 693-696. https://doi.org/10.4028/www.scientific.net/KEM.385-387.693
  4. Swindemana, R.W. and Swindemanb, M. J., 2008, "A Comparison of Creep Models for Nickel Base Alloys for Advanced Energy Systems," International Journal of Pressure Vessels and Piping, Vol. 85, pp. 72-79. https://doi.org/10.1016/j.ijpvp.2007.06.012
  5. Manson, S. S., and Ensign, C. R., 1978, "Interpolation and Extrapolation of Creep Rupture Data by the Minimum Commitment Method-Part 2," ASME MPC-7, New York, pp. 299-398.
  6. Yin, S. N., Kim, W. G., Ryu, W. S. and Yi, W., 2007, "Creep-Life Prediction and Its Error Analysis by the Time Temperature Parameters and the Minimum Commitment Method" Trans. of the KSME (A), Vol. 31, No. 2, pp. 160-165. https://doi.org/10.3795/KSME-A.2007.31.2.160
  7. Manson, S. S. and Ensign, C. R., 1971, "Specialized Model for Analysis of Creep Rupture Data by the Minimum Commitment Method, Station- Function Approach," NASA TM, X-52999, pp. 1-14.
  8. White, W. E. and Iain Le May, 1978, "On the Minimum-Commitment Method for Correlation of Creep-Rupture Data," Journal of Engineering Materials and Technology, Vol. 100, pp. 333-335. https://doi.org/10.1115/1.3443498
  9. Le May, I., 1979, "Developments in Parametric Methods for Handling Creep and Creep-Rupture Data," Transactions of the ASME, Vol. 101, pp. 326-330. https://doi.org/10.1115/1.3450968
  10. Penny, R. K. and Marriott, D. L., 1995, "Design for Creep" second edition, Chapman & Hall, London, pp. 8-42.
  11. Norton, F. H., 1929, "The Creep of Steel at High Temperatures," McGraw-Hill, Londdon.
  12. Penkalla, H. J., Over, H. H. and Schubert, F., 1984, "Constitutive Equations for the Description of Creep and Creep Rupture Behavior of Metallic Materials at Temperatures Above $800{^{\circ}C}$," Nuclear Technology, Vol. 66, pp. 685-692. https://doi.org/10.13182/NT84-A33490
  13. Garofalo, F., "Fundamentals of Creep and Creep- Rupture in Metals," The Macmillan Co., New York, 1966, pp. 1-21 and pp. 200-220.
  14. Kim, W. G., Kim, S. H. and Ryu, W. S., 2002, "Evaluation of Monkman-Grant Parameters for Type 316LN and Modified 9Cr-Mo Stainless Steels," Trans. of the KSME (A), Vol. 16, No. 11, pp. 1420-1427.
  15. Kim, W. G., Kim, S. H. and Ryu, W. S., 2001, "Creep Characterization of Type 316LN and HT-9 Stainless Steels by the K-R Creep Damage Model," Trans. of the KSME (A), Vol. 15, No. 11, pp. 1463-1471.
  16. Dimmler, G. Weinert, P. Cerjak, H., 2008. "Extrapolation of Short-term Creep Rupture Data-the Potential Risk of Over-Estimation," International Journal of Pressure Vessels and Piping, Vol.85, pp.55-62. https://doi.org/10.1016/j.ijpvp.2007.06.003
  17. Yin, S. N., Kim, W. G., Jung, I. H. and Kim, Y. W., 2009, "Suggestion and Evaluation of a Muli- Regression Linear Model for Creep Life Prediction of Alloy 617," Trans. of the KSME (A), Vol.33. No.4, pp.366-372. https://doi.org/10.3795/KSME-A.2009.33.4.366
  18. Eno, D. R., Yong, G.. A. and Sham, T. L., 2008, "A Unified View of Engineering Creep Parameters," Proceedings of PVP2008, pp. 1-16.