• Title/Summary/Keyword: Series DC/DC Converter

Search Result 295, Processing Time 0.024 seconds

Series Connected DC/DC Converter for Fuel Cell System using Variable Phase Shift Switching Method (가변 위상변위 스위칭방식을 적용한 연료전지용 변압기 직렬형 DC/DC 컨버터)

  • Park, Noh-Sik;Kwon, Soon-Jae;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a novel series connected DC/DC converter and a proper variable phase shift switching method in order to obtain high voltage ratio for fuel cell system. The proposed series connected DC/DC converter has same rectifier and LC filter for DC output voltage, so it can reduce the number of passive devices regardless of the converter number. In the conventional constant phase shift switching method, the proposed series connected DC converters have inverse bias output voltage. In order to overcome this problem, a simple but proper variable phase shift switching method is proposed in the a novel series connected DC/DC converter. In order to verify the proposed system, simulation and experiments are implemented.

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

A Novel SLLC Series Resonant Converter for The Boost DC/DC Converter (SLLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Kim, Eun-Soo;Kang, Sung-In;Chung, Bong-Geun;Cha, In-Su;Yoon, Jeong-Phil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Recently, the high frequency link boost DC/DC converter has been used widely for PCS (Power Conditioning System) because of the requirements of small size and low cost. However, the high frequency link boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have some problems like high conduction losses and high surge voltage due to high circulating current and leakage inductance, respectively. To improve these problems, a novel secondary LLC (called SLLC) series resonant converter is proposed in this paper and its theoretical analysis, its operating waveforms, simulation and experimental results for a boost DC/DC converter using SLLC series resonant topology verifies the proposed topology. 800W experimental prototype is tested.

The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter (변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Lee Hyun-Kwan;Cha In-Su;Lee Gi-Sik;Chung Bong-Geun;Kang Sung-In;Kim Eun-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.423-429
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 700W experimental prototype.

Simple High Efficiency Full-Bridge DC-DC Converter using a Series Resonant Capacitor

  • Jeong, Gang-Youl;Kwon, Su-Han;Park, Geun-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • This paper presents a simple high efficiency full-bridge DC-DC converter using a series resonant capacitor. The proposed converter achieves the zero voltage switching of the primary switches under a wide range of load conditions and reduces the high circulating current in the freewheeling mode using the leakage resonant inductance and the series resonant capacitor. Thus, the proposed converter overcomes the drawbacks of the conventional full-bridge DC-DC converter and improves its overall system efficiency. Its structure is simplified by using the leakage inductance of the transformer as the resonant inductance and omitting the DC output filter inductance. Also it can operate over a wide range of input voltages. In this paper, the operational principle, analysis and design example are described in detail. Finally, the experimental results from a 650W (24V/27A) prototype are demonstrated to confirm the operation, validity and features of the proposed converter.

Study on conversion efficiency of RF-DC converter with series diode (직렬 연결 RF-DC 변환기의 변환효율에 관한 연구)

  • Choi, Ki-Ju;Hwang, Hee Yong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.69-73
    • /
    • 2010
  • In this paper, we designed the RF-DC converter used in wireless power transmission system and studied how to design the RF-DC converter of high conversion efficiency. The RF-DC converter operate at 2.45GHz and the diode is connected with series. The RF-DC converter uses shorted stub for DC loop and matching. We can divide the RF-DC converter circuit into four blocks. The reflection coefficients between the blocks were optimized for the maximum conversion efficiency at 0 dBm input power and $1300{\Omega}$ load impedance. The final design of the RF-DC converter has a 52 percent conversion efficiency.

  • PDF

A LC series resonant bidirectional DC/DC converter (LC 직렬 공진을 이용한 양방향 DC/DC 컨버터)

  • Park, Kun-wook;Jung, Doo-yong;Song, In-beom;Lee, Su-won;Jung, Yong-chae;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.198-199
    • /
    • 2010
  • In this paper, bi-directional DC/DC converter using a LC series resonant converter is proposed. A proposed converter is consisted by adding LC series resonant tank into a conventional bi-directional DC/DC converter and performs soft-switching at both boost and buck mode. A LC series resonance occurs in whole operation mode and switching point is determined by specific condition. Through the theoretical analysis and simulation results, operation modes and characteristics of the proposed topology is verified.

  • PDF

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.

The Analysis of a High Frequency Series Resonant DC-DC Converter (고주파 직렬공진형 DC-DC Converter의 특성 해석)

  • 이윤종;김철진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.934-943
    • /
    • 1990
  • There are no turn-on losses in the series Resonant Converter which operates above the resonance frequency, and the commutation stress on the switched component is low. For a given Series Resonant Converter with specified load resistance, the output voltage is a function of the operation frequency. This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter, which is operating above the resonant frequency, with frequency control. For the analysis method, state plane technique is adopted, and the circuit operation is defined from normalized switching frequency, Fsn. Under this condition, circuit performance is analyzed ideally. The validity of the proposed analysis is verified by comparing with experimental results, the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis, and the stress quantity added to switch component is shown.

  • PDF