• Title/Summary/Keyword: Series 60 ($C_B$=0.60) Hull

Search Result 22, Processing Time 0.03 seconds

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Kim, Sang-Hoon;Kim, Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60(C${_B}$=0.6) hull had been performed and the results obtained after the numerical calculations had been compared with the original hulls.

  • PDF

Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

  • Choi, Hee-Jong;Chun, Ho-Hwan;Park, Il-Ryong;Kim, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.225-232
    • /
    • 2011
  • In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 ($C_B$=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Yun, Soon-Dong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.869-875
    • /
    • 2006
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60( $C_B=0.6$) hull have been performed and the results obtained by the numerical calculations have been compared with the original hulls.

Panel Cutting Method a New Approach in Hull Surface Panel Generation (패널절단법 선체표면 패널생성을 위한 새로운 시도)

  • Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.638-646
    • /
    • 2006
  • In this paper a new hull-panel generation algorithm named 'Panel Cutting Method' was developed to solve the flow phenomena around a ship advancing on the free surface with a constant speed. In this algorithm the non-linearity of the free surface boundary conditions was taken into account using the iterative method and the raised panel was used at each iteration step. Numerical calculations were performed to investigate the validity of the developed algorithm using the series $60(C_B=0.60)$ hull The wave resistance coefficients, the wave patterns and the wave heights were compared between the computed and the experimental results at Fn=0.25 and 0.316. The comparison showed good agreement between computation and experiment.

An Experimental Study on the Shallow Water Effect on Series 60 Hull Form (천수 영역에서의 Series 60 선형에 대한 실험적 고찰)

  • H.E. Kim;S.H. Seo;Y.G. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.21-26
    • /
    • 2000
  • For coastal service ships, the water depth is a very important parameter in the design stage of the hull form that has an influence on the restriction of the speed and draft of ships. In this study, the water depth is important for ship design. In this research, the change of total resistance, trim and sinkage due to the variation of water depth are measured by using on equipment for shallow water condition. For the basic research step about the shallow water effect, the effects on Series60($C_B=0.6$) hull form are experimented. To compare with existing experiment results, the test conditions are same with those. The water depth conditions are 10, 15, 20, 25% of LPP of the model ship, respectively.

  • PDF

A Study on the Optimal Forebody Forms for Minimum Wave Resistance (최소조파 저항성능을 갖는 최적 선수형상에 관한 연구)

  • Sung-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.28-39
    • /
    • 1991
  • A study on the optimization problems to find forebode shapes with minimum wavemaking and frictional resistance was performed. The afterbody was fixed as a given hull and only forebode offsets were treated as design variables. Design variables were divided into the offsets of given hull and small variation from them. For the wavemaking resistance calculation, Neumann-Kelvin theory was applied to the given hull and thin ship theory was applied to the small variation. ITTC 1957 model-ship correlation line was used for the calculation of frictional resistance. Hull surface was represented mathmatically using shape function. As object function, such as wavemaking and frictional rersistance, was quadratic form of offsets and constraints linear, quadratic programing problem could be constructed. The complementary pivot method was used to find the soulution of the quadratic programing problem. Calculations were perfomed for the Series 60 $C_{B}$=0.6. at Fn=0.289. A realistic hull form could be obtained by using proper constraints. From the results of calculation for the Series 60 $C_{B}$=0.6, it was concluded that present method gave optimal shape of bulbous bow showing a slight improvement in the wave resistance performance at design speed Fn=0.289 compared with the results from the ship theory only.

  • PDF

A Study on Hull-Form Design for Ships Operated at Two Speeds (두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구)

  • Kim, Tae Hoon;Choi, Hee Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • The purpose of this study is related to automatic hull-form design for ships operating at two speeds. Research was conducted using a series 60 ($C_B=0.6$) ship as a target, which has the most basic ship hull-form. Hull-form development was pursued from the viewpoint of improving resistance performance. In particular, automatic hull-form design for a ship was performed to improve wave resistance, which is closely related to hull-forms. For this purpose, we developed automatic hull-form design software for ships by combining an optimization technique, resistance prediction technique and hull-form modification technique, appling the software developed to a target ship. A sequential quadratic programming method was used for optimization, and a potential-based panel method was used to predict resistance performance. A Gaussian-type modification function was developed and applied to change the ship hull-form. The software developed was used to design a target ship operating at two different speeds, and the performance of the resulting optimized hull was compared with the results of the original hull. In order to verify the validity of the program developed, experimental results obtained in model tests were compared with calculated values by numerical analysis.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

A Computational Method of Wave Resistance of Ships in Water of Finite Depth (유한수심에서의 조파저항계산에 관하여)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • A computational method of the Michell integral for water of finite depth is developed and the method makes use of the expansion of the hull form by the Legendre polynomial in both the longitudinal and the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry of the hull form, and the hydrodynamic factor upon the depth-based Froude number and the ratios of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic hull and the Series 60 $C_B$ 0.6, and the comparison of our results with the existing experimental data is shown.

  • PDF