• Title/Summary/Keyword: Sequential Search

Search Result 200, Processing Time 0.034 seconds

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Medical Image Compression Using JPEG International Standard (JPEG 표준안을 이용한 의료 영상 압축)

  • Ahn, Chang-Beom;Han, Sang-Woo;Kim, Il-Yoen
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.504-506
    • /
    • 1993
  • The Joint Photographic Experts Group (JPEG) standard was proposed by the International Standardization Organization (ISO/SC 29/WG 10) and the CCITT SG VIII as an international standard for digital continuous-tone still image compression. The JPEG standard has been widely accepted in electronic imaging, computer graphics, and multi-media applications, however, due to the lossy character of the JPEG compression its application in the field of medical imaging has been limited. In this paper, the JPEG standard was applied to a series of head sections of magnetic resonance (MR) images (256 gray levels, $256{\times}256$ size) and its performance was investigated. For this purpose, DCT-based sequential mode of the JPEG standard was implemented using the CL550 compression chip and progressive and lossless coding was implemented by software without additional hardware. From the experiment, it appears that the compression ratio of about 10 to 20 was obtained for the MR images without noticeable distortion. It is also noted that the error signal between the reconstructed image by the JPEG and the original image was nearly random noise without causing any special-pattern-related artifact. Although the coding efficiency of the progressive and hierarchical coding is identical to that of the sequential coding in compression ratio and SNR, it has useful features In fast search of patient Image from huge image data base and in remote diagnosis through slow public communication channel.

  • PDF

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

An Efficient Bitmap Indexing Method for Multimedia Data Reflecting the Characteristics of MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 특성을 반영한 효율적인 멀티미디어 데이타 비트맵 인덱싱 방법)

  • Jeong Jinguk;Nang Jongho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Recently, the MPEG-7 standard a multimedia content description standard is wide]y used for content based image/video retrieval systems. However, since the descriptors standardized in MPEG-7 are usually multidimensional and the problem called 'Curse of dimensionality', previously proposed indexing methods(for example, multidimensional indexing methods, dimensionality reduction methods, filtering methods, and so on) could not be used to effectively index the multimedia database represented in MPEG-7. This paper proposes an efficient multimedia data indexing mechanism reflecting the characteristics of MPEG-7 visual descriptors. In the proposed indexing mechanism, the descriptor is transformed into a histogram of some attributes. By representing the value of each bin as a binary number, the histogram itself that is a visual descriptor for the object in multimedia database could be represented as a bit string. Bit strings for all objects in multimedia database are collected to form an index file, bitmap index, in the proposed indexing mechanism. By XORing them with the descriptors for query object, the candidate solutions for similarity search could be computed easily and they are checked again with query object to precisely compute the similarity with exact metric such as Ll-norm. These indexing and searching mechanisms are efficient because the filtering process is performed by simple bit-operation and it reduces the search space dramatically. Upon experimental results with more than 100,000 real images, the proposed indexing and searching mechanisms are about IS times faster than the sequential searching with more than 90% accuracy.

A Data Allocation Method based on Broadcast Disks Using Indices over Multiple Broadcast Channels (다중방송 채널에서 인덱스를 이용한 브로드캐스트 디스크 기반의 데이타 할당 기법)

  • Lee, Won-Taek;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.272-285
    • /
    • 2008
  • In this paper, we concentrate on data allocation methods for multiple broadcast channels. When the server broadcasts data, the important issue is to let mobile clients access requested data rapidly. Previous works first sorted data by their access probabilities and allocate the sorted data to the multiple channels by partitioning them into multiple channels. However, they do not reflect the difference of access probabilities among data allocated in the same channel. This paper proposes ZGMD allocation method. ZGMD allocates data item on multiple channels so that the difference of access probability in the same channel is maximized. ZGMD allocates sorted data to each channels and applies Broadcast Disk in each channel. ZGMD requires a proper indexing scheme for the performance improvement. This is because in ZGMD method each channel got allocated both hot and cold data. As a result, the sequential search heuristic does not allow the mobile client to access hot data items quickly. The proposed index scheme is based on using dedicated index channels in order to search the data channel where the requested data is. We show that our method achieve the near-optimal performance in terms of the average access time and significantly outperforms the existing methods.

Pulmonary Nodule Registration using Template Matching in Serial CT Scans (연속 CT 영상에서 템플릿 매칭을 이용한 폐결절 정합)

  • Jo, Hyun-Hee;Hong, He-Len
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.623-632
    • /
    • 2009
  • In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.

Preliminary Design Procedure of MR Dampers for Controlling Seismic Response of Building Structures (건축구조물의 지진응답제어를 위한 MR 감쇠기 예비설계절차)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Roo-Jee;Kim, Joong-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.55-64
    • /
    • 2004
  • In this paper, the preliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. The dynamic characteristics and control effects of the modeling methods of MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc?Wen, Bouc?Wen with mass element, and phenomenological models are investigated. Of these models, hysteretic biviscous model which is simple and capable describing the hysteretic characteristics, is used for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified sequential search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

Merchandise Management Using Web Mining in Business To Customer Electronic Commerce (기업과 소비자간 전자상거래에서의 웹 마이닝을 이용한 상품관리)

  • 임광혁;홍한국;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.97-121
    • /
    • 2001
  • Until now, we have believed that one of advantages of cyber market is that it can virtually display and sell goods because it does not necessary maintain expensive physical shops and inventories. But, in a highly competitive environment, business model that does away with goods in stock must be modified. As we know in the case of AMAZON, leading companies already consider merchandise management as a critical success factor in their business model. That is, a solution to compete against one's competitors in a highly competitive environment is merchandise management as in the traditional retail market. Cyber market has not only past sales data but also web log data before sales data that contains information of path that customer search and purchase on cyber market as compared with traditional retail market. So if we can correctly analyze the characteristics of before sales patterns using web log data, we can better prepare for the potential customers and effectively manage inventories and merchandises. We introduce a systematic analysis method to extract useful data for merchandise management - demand forecasting, evaluating & selecting - using web mining that is the application of data mining techniques to the World Wide Web. We use various techniques of web mining such as clustering, mining association rules, mining sequential patterns.

  • PDF

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.