• Title/Summary/Keyword: Sequential Search

Search Result 200, Processing Time 0.029 seconds

Design of ferromagnetic shims for an HTS NMR magnet using sequential search method

  • Yang, Hongmin;Lee, SangGap;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.39-43
    • /
    • 2021
  • This study deals with the ferromagnetic shims design based on the spherical harmonic coefficient reduction method. The design method using the sequential search method is an intuitive method and has the advantage of quickly reaching the optimal result. The study was conducted for a 400 MHz all-REBCO magnet, which had difficulty in shimming due to the problem of SCF (screening current induced field). The initial field homogeneity of the magnet was measured to be 233.76 ppm at 20 mm DSV (Diameter Spherical Volume). In order to improve the field homogeneity of the magnet, the ferromagnetic shim with a thickness of 1 mil to 11 mil was constructed by a design method in which sequential search algorithm was applied. As a result, the field homogeneity of the magnet could be significantly improved to 0.24 ppm at 20 mm DSV and 0.05 ppm at 10 mm DSV.

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.

A 0.5-2.0 GHz Dual-Loop SAR-controlled Duty-Cycle Corrector Using a Mixed Search Algorithm

  • Han, Sangwoo;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.152-156
    • /
    • 2013
  • This paper presents a fast-lock dual-loop successive approximation register-controlled duty-cycle corrector (SARDCC) circuit using a mixed (binary+sequential) search algorithm. A wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy have been achieved by utilizing the dual-loop architecture and the binary search SAR that achieves the fast duty-cycle correcting property. By transforming the binary search SAR into a sequential search counter after the first DCC lock-in, the proposed dual-loop SARDCC keeps the closed-loop characteristic and tracks variations in process, voltage, and temperature (PVT). The measured duty cycle error is less than ${\pm}0.86%$ for a wide input duty-cycle range of 15-85 % over a wide frequency range of 0.5-2.0 GHz. The proposed dual-loop SARDCC is fabricated in a 0.18-${\mu}m$, 1.8-V CMOS process and occupies an active area of $0.075mm^2$.

WIS: Weighted Interesting Sequential Pattern Mining with a Similar Level of Support and/or Weight

  • Yun, Un-Il
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.336-352
    • /
    • 2007
  • Sequential pattern mining has become an essential task with broad applications. Most sequential pattern mining algorithms use a minimum support threshold to prune the combinatorial search space. This strategy provides basic pruning; however, it cannot mine correlated sequential patterns with similar support and/or weight levels. If the minimum support is low, many spurious patterns having items with different support levels are found; if the minimum support is high, meaningful sequential patterns with low support levels may be missed. We present a new algorithm, weighted interesting sequential (WIS) pattern mining based on a pattern growth method in which new measures, sequential s-confidence and w-confidence, are suggested. Using these measures, weighted interesting sequential patterns with similar levels of support and/or weight are mined. The WIS algorithm gives a balance between the measures of support and weight, and considers correlation between items within sequential patterns. A performance analysis shows that WIS is efficient and scalable in weighted sequential pattern mining.

  • PDF

Accelerating Group Fusion for Ligand-Based Virtual Screening on Multi-core and Many-core Platforms

  • Mohd-Hilmi, Mohd-Norhadri;Al-Laila, Marwah Haitham;Hassain Malim, Nurul Hashimah Ahamed
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.724-740
    • /
    • 2016
  • The performance issues of screening large database compounds and multiple query compounds in virtual screening highlight a common concern in Chemoinformatics applications. This study investigates these problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are presented in this paper. The design involves solving two important stages of group fusion, namely, similarity search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The outcome of the analysis from these three different design approaches influenced the design of parallel CUDA version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had been CUDA-optimized.

Sequential Paging under Delay Bound for Next Generation Mobile Systems (차세대 이동통신에서의 지연을 고려한 순차적 페이징)

  • Lee, Chae-Yong;Ku, Sang-Hoon
    • Korean Management Science Review
    • /
    • v.23 no.3
    • /
    • pp.13-25
    • /
    • 2006
  • To reduce the signaling tost of paging in mobile communication, sequential paging schemes are proposed by partitioning a location area into several paging areas such that each area is paged sequentially. Necessary conditions for the optimal partition of cells with delay bound are examined by considering the mobiles location probability at each cell. The Optimal Cell Partitioning (OCP) is proposed based on the necessary conditions and the fathoming rule which trims off the unnecessary solution space and expedite the search process. Two Heuristics, BSG and BNC are also presented to further increase the computational efficiency in real-world paging scheme for the next generation mobile systems. The effectiveness of the 1)reposed paging schemes is illustrated with computational results. The Heuristic BSG that performs the search in the most promising solution group outperforms the best existing procedure with the 6-69% gain in paging cost in problems with 100 cells.

A Study of Dependent Nonstationary Multiple Sampling Plans (종속적 비평형 다중표본 계획법의 연구)

  • 김원경
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2000
  • In this paper, nonstationary multiple sampling plans are discussed which are difficult to solve by analytical method when there exists dependency between the sample data. The initial solution is found by the sequential sampling plan using the sequential probability ration test. The number of acceptance and rejection in each step of the multiple sampling plan are found by grouping the sequential sampling plan's solution initially. The optimal multiple sampling plans are found by simulation. Four search methods are developed U and the optimum sampling plans satisfying the Type I and Type ll error probabilities. The performance of the sampling plans is measured and their algorithms are also shown. To consider the nonstationary property of the dependent sampling plan, simulation method is used for finding the lot rejection and acceptance probability function. As a numerical example Markov chain model is inspected. Effects of the dependency factor and search methods are compared to analyze the sampling results by changing their parameters.

  • PDF

Collision Free Path Planing of Articulated Manipulator for Remote Maintenance Using Sequential Search Method (원격 유지보수용 다관절 조작기의 순차 탐색에 의한 장애물 회피 경로계획)

  • 이종열;송태길;김성현;박병석;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.519-522
    • /
    • 1997
  • In this study, the collision free path planning method of the articulated manipulator using sequential search is proposed. This method is to find the joint path of the manipulator with many degrees of freedom from the distal joint to the proximal one. To do this, the initial work space of the gantry manipulator, which is a remote maintenance equipment of the radioactive environment, is defined from the condition that the distal joint configuration is determined by the posture of maintenance. Then, 2-dimensional configuration space with the obstacle area is represented and the collision free path of manipulator is searched in the configuration space. And, this method is verified using the graphic simulation in virtual workcell for the spent fuel disassembling processes. The result of this study can be effectively used in implementing the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.