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Sequential Paging under Delay Bound
for Next Generation Mobile Systems

Chae Yong Lee* - Sang Hoon Ku*

—m Abstract m—

To reduce the signaling cost of paging in mobile communication, sequential paging schemes are proposed by
partitioning a location area into several paging areas such that each area is paged sequentially. Necessary con-
ditions for the optimat partition of cells with delay bound are examined by considering the mobiles location prob-
ability at each cell. The Optimal Cell Partitioning (OCP) is proposed based on the necessary conditions and the
fathoming rule which trims off the unnecessary solution space and expedite the Search process. Two Heuristics,
BSG and BNC are also presented to further increase the computational efficiency in real-world paging scheme
for the next generation mobile Systems.

The effectiveness of the proposed paging schemes Is illustrated with computational results. The Heuristic BSG
that performs the search in the most promising solution group outperforms the best existing procedure with the
6-69% gain in paging cost in problems with 100 cells.

Keyword : Mobile Communication, Sequential Paging, Delay Bound

[. Introduction work is the design and analysis of strategies for
tracking the mobile terminals (MTs). Mobility
One of the important issues in wireless net- tracking is concerned with finding an MT within
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the area serviced by the wireless network. Two
basic operations for tracking an MT are : loca-
tion update and paging. When an MT enters a
new Location Area (LA), it performs a location
update via the access channel to a base station
in the new LA. Consequently, the system is al-
ways aware of the current location of an MT.
Paging is the process in which a system search-
es for an MT by sending polling messages to
the cells within the last reported LA of the MT.

The current GSM and IS-41 protocols per-
form a broadcast paging procedure {2, 3, 12] in
which the mobile switching center (MSC)
broadcasts the paging request to all cells in the
MT’s last registered LA. All base stations with—
in the same LA broadcast the identifier (ID) of
their LA periodically. Each MT compares its
registered LA ID with the current broadcast LA
ID. Location update is triggered if the two IDs
are different. Upon a call arrival for a particular
MT, all cells within its current LA are polled
simultaneously, ensuring paging success within
a single step.

Since the paging signal is broadcast at every
base station in the LA, the signaling cost can
be measured in terms of the number of cells to
be searched before the called MT is found. Thus,
considering the resource utilization [4, 7], the
current broadcast paging scheme is inefficient
since all cells in the LA are searched. Moreover,
as the size of an LA increases with microcells,
a significant amount of radio resource is con-
sumed in paging for each call arrival. This can-
not be scalable to next generation mobile sys—
tems with the growing number of mobile users
and a variety of service characteristics which
requires increased signaling and processing load

in the wireless network.

In order to improve the efficiency of band-
width utilization, many sequential paging
schemes under the delay constraints are sug-
gested [1-2, 6-12]. With the constraint of delay
bound the minimization of paging costs requires
the partitioning of an LA into several paging
areas based on the location probability of each
cell. Then each paging area is searched sequen-
tially within the delay bound. Thus the essence
of the minimization is how to partition the cells
into paging areas. Goodman et al. [6] propose
a grouping algorithm based on the dynamic
programming. They partition cells into groups
by iteratively increasing the number of paging
areas up to the delay bound. Since the computa-
tion is based on the dynamic programming, the
well-known curse of dimensicnality problem
exists as the number of cells and the delay
bound increase.

Wang et al. [10] starts the partitioning proce-
dure first by sorting the cells into nonincreasing
location probabilities. Those cells are then even-
ly distributed into D paging areas with prefer-
ence to paging area D, D-1, -+ for remaining
cells. The procedure continues by moving cells
in a paging area back and forth by the boundary
conditions. The performance of the procedure is
very efficient compared to other search proce-
dures [10] in the literature. However, the proce-
dure cannot guarantee the optimal partition of
the cells that minimizes the paging cost within
the delay bound. This is because the procedure
starts by distributing cells evenly into each pag-
ing area.

In this paper, we investigate the necessary
conditions for the optimal partition of cells into
paging areas with delay bound. An optimal par-
tition is provided based on the necessary con-
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ditions and a fathoming rule that eliminates un-
necessary solutions in the search process. Two
heuristics are also examined to reduce the search
process of the optimal partition. Computational
result shows that the parttioning algorithm and
the two heuristics provide better solution quality
compared to the procedure by [10].

2. Minimization of Paging
Cost with Delay Bound

We assume that coverage area of the cellular
network is divided into LAs and that the proba-
bility an MT is residing at each cell is given.
Also, assume the paging cost C is measured in
terms of the number of cells paged before the
called MT is found. The delay bound D is meas—
ured in terms of the number of polling cycles
[10]. For instance, if D=1, the system should find
the called MT in one polling cycle, requiring all
cells in the LA to be polled simultaneously. In
this case the paging cost C is equal to the total
number of cells N in the LA. We consider a
partition x of cells such that 1< D<N, which
requires grouping cells in an LA into D paging
areas. The location probehility p is given by
p=1[pp Py Py s pyl, where pi is the probability
that the called MT is found in cell j and satisfies
Dy =Py = -+ = py . Given a partition x, Let ni
be the number of cells contained in the paging area
I, and gi be the probability that the called MT is
found in the paging area i. Clearly, the location
probability gi of the paging area { is given by

9= L.P; where PA(i) is paging area i.
JEPA()

The expected paging cost of a partition x under
delay bound D, E[C(x)], is computed as fol-

lows:
2 i
E[C(x)]=") q,k,, where k,=) n,
i=1 k=1

Also, the expected delay of the solution x,
EID(x)], is

D
E[D(x)] = ) i-q;
i=1

2.1 Necessary Conditions for Optimal
Partition of Cells

To minimize the paging cost under delay
bound D, the following necessary conditions and
a corollary are proposed.

Lemma 1.

The expected paging cost E[C (x)] is mini-
mized, when the number of paging areas is equal
to the delay bound D.

Proof. Consider a partition = with d paging
areas, 1 < d < D—1. To prove the lemma, it is
enough to show that there exists a partition z’
which has lower paging cost than z with d+1
paging areas. Let ' be a new partition gen-
erated from z by dividing an arbitrary paging
area [ into two paging areas [ and /+1 such that

n,=n,;, qi=q; i=1,-,01—1

n =ty =g tgy,

"i=n;+1qu‘=‘I;+1 i=1+1,142,-,d

where n’, and ¢, are respectively the number
of cells and the probability that the called MT
is found in the paging area i in partition z .
Then the average paging cost of x and z’are
computed as follows:
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Since Zq,- k= Zqi -k, in the above two
i=l+1 i=l+2

equations, we have

E[C(x)] - E[C(x")]
=q, (ki +m)—[q,(k, + m)+ g md
=q,(n ‘”;)—CI;H '"1I+1

=g, m,, >0

- It shows that the cost of =’ with d+1 paging
areas is less than the cost x with d paging areas.

Lemma 2. [Rose and Yates, 6]

- The expected paging cost E[C (x)] is mini-
mized, when the cells are paged in nonincreasing
order of their location probabilities.

Lemma 3.

Except the case where all location probabilities
of the cells are equal, the expected paging cost
E[C (x)] is minimized when the paging area is
paged in the order of nondecreasing number of
cells in each area.

Proof. Consider an optimal partition x where

2n;,, +1 for an arbitrary paging area [, [=1,
2, -+, D-1. Let =" be a new partition obtained
by moving the cell with the smallest probability
in paging area [ of partition x to paging area [+].
Let the smallest probability be p*, then we have

E[C(z)] - El(z")]

= [Z‘Ii - k; +‘11(kz—1 +"1) +ql+1(kl—1 +”1+"l+1)

i=1

+§qi.k]_

i=1+2

-1
[2% ‘ ki+(ql
i=1

—p* )k, +n,—1)

D
gy +0°) kot )+ D5 g e Kl
i=i+2

= ‘Il'Ps(”Hl'*’l)

>p° - m—p°(n,,+1) >0

This is a contradiction to that x is an optimal
partition. Therefore, n, <n,,, is satisfied for all
i=1, --, D-1 in the optimal partition. In fact,
ElCc(z)) = F'[c(z')], if all probabilities in paging
area [ are equal to p* and n=n_, +1.

Corollary 1. (Another expression of Lemma 3)
To satisfy the Lemma 3, the number of cells r;
in the paging area i is determined as follows:

2.2 Partition of Cells into Paging Areas

Throughout this paper we assume cells are
sequenced in nonincreasing order of location
probability. Then by Lemma 1, 2, and 3, to find
a solution x is to partition the cells into D paging
areas such that the number of cells in the D
paging areas is nondecreasing in the order of
paging sequence. Thus the problem becomes to
find the number of cells in each paging area
without changing the cell sequenice of the de-
creasing location probability. More specifically,
let x = (ny, ny, -, np_y, np) where n; is the mum-
ber of cells in paging area i, then from Lemma
3 it is clear that < n, < .. = np , < ny,

when not all the location probabilities are the



same in a paging area. Now, our problem is to

find a partition x that minimizes the expected

paging cost E[C(z)] while satisfving the

Lemma 3. To find the optimal partition, we clas—

sify solutions depending on the solution group
k—1,..., K and the number of cells m in the pag-
ing area D-1. The solution group k is defined

as a set of all solutions tha: have the same num-

ber of cells in each paging area from 1 to D-2.
Let z¥ be a solution in group k with m cells
in the paging area D-1. Then the following
fathoming condition is satisfied.

Fathoming Rule: For a solution z* in the sol-
ution group &, if E[C(z . ,)] = E[C(zF)] then
the solution group k is fathomed, which means

that xfn gives the minimum cost in the solution

group k Hence solutions z,,,, 2% ,, * need not

be evaluated any further.

Proof. Suppose that the paging cost of z* ., is
greater than or equal to that of z*, and that
there exists a solution z* ,, for ¢ > 2 which has
lower paging cost than z!. Let p', p%..., p' be
fespectively the largest, the second largest and
the t-th largest probability in paging area D of
z¥ . Since E{C(aF)]— ElC(2F | ,)] < 0, we have

ElC(e; )1 - ElC(ak, 1))

D—2

= [Z‘Iz ckitap_q - (kD»—2+m)+‘ID' M
i=1

D-2
_[Zqi 'k,-+(qp_1 +P1)(k‘7~2+m+1)+(510“111) ‘ ]V]
i=1

=—gp_+0' (np_; +np—m—1)

=—gqp_,+p(np=1) <0
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Thus, we have
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P _nD—l

Now, for any t > 2

D=2
= gk tap_ (kD—2+m)+qD' N
i=1
D-2
=24« kit (gp_ +p' +p*+ - +p')
i=1
(kp_y+m+t)+(gp~p' —p*— - —p') - M

=—-tqD_1+(p1+ +pt)(nD—t)

<—tgp_,+tp'(np—t)

np—1
< t D

= W9pa| T ——5
nD—t

—1]<0

Therefore, we have E[C(z¥,,) > E[C(z*)]
which is a contradiction to the assumption that
there exists a solution z* ., which has lower
paging cost than mfn Thus, the solution group
k is fathomed, if E[C(zF . ,) > ElC(zF)).

As an example, consider a problem with N
=20, D=3 and p = [0.14, 0.14, 0.13, 0.13, 0.04, 0.04,
0.04, 0.04, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025,
0.025, 0.025, 0.025, 0.025, 0.025, 0.025]. <Figure
1> shows 33 feasible solutions that satisfy the
delay constraint. The 33 solutions are classified
into six solution groups depending on the num-
ber of cells in the paging area 1. In the figure
solution group 1 has nine feasible solutions =z
=(1,1,18), z3=(1, 2,17, -, and =} = (1, 9, 10)
depending on the number of cells in the paging
area 2. <Figure 2> shows the paging cost of
each solution in the same order shown in
<Figure 1>. According to the fathoming rule,
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{Figure 2> The Paging Cost of Solutions in the
Six Groups

the solution xzj in <Figure 2> gives the mini-
mum paging cost in the solution group 1. In oth-
er words, since E[C(z})] < E[C(z7)], solution

group 1 is fathomed and z3 and z; need not be
evaluated any further. The fathoming rule is al-
so applied to other solution groups and reduces
the computational effort by cutting out un-
necessary partitions.

3. Cell Partitioning Algorithms
for Sequential Paging

To find a solution that minimizes the expected
paging cost under the delay bound, threealgor-
ithms are developed by employing necessary
conditions and the fathoming rule presented in
Section II

3.1 Optimal Cell Partitioning

This algorithm is designed to give the optimal
partition of cells that minimizes the paging cost.
All feasible solutions z* that satisfy the three
necessary conditions are generated and eval-
uated at each solution group k=1, -+, K. The
fathoming rule is applied to reduce the solution
space. Before introducing the algorithm, notice
that the minimum and the maximum number of
cells in paging area D—1 are different for each
solution group k. Let n* be the number of cells
in paging area i of solution group k. Then from
Lemma 3, it is clear that

D-2
N=-m
i=1

<

k k
Mp-y = Mp-1

‘
2

To simplify the notation, we denote n¥,, =nk,_,

D-2
N—Yonf
i=1 :

2

and nf, =

Algorithm OCP

Step 1 : Sort the cells in nonincreasing order of
location probability by Lemma 2.

Step 2 : Generate solutions z* for k=1, 2, -,
K and nf,, <m <nf,,

by Lemma 1 and 3. Let k=0 and 2, <—co.
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Step 3: Let k<—k+1, if k> K, then go to Step 4.
Let m «—nf, and E[C(zF _ )]« co.
Compute E{C(zF)).

31 I ElC(zF)]< Elc(af, )], then,
z, = E[C(2F)], x’jpt =zF and
m<—m+1.
If m>nk, , let z,, =2, and z,, =zt
if z, <z,_;. Go to Step 3. Otherwise,
repeat 3.1.

321 ElC(z)] = ElC(zk _ )], then the sol-
ution group k is fathomed. If z, <z,_,,
then z,,, = 24, T = zy, and go to Step 3.

Step 4 : Stop with the optimal partition z,, and

the optimal paging cost z,,.

3.2 Heuristic with the Best Solution Group

To reduce the computational effort required in
the Algorithm OCP we propose a heuristic based
on the best solution group. To select the best
group a solution in each group is evaluated and
compared. In each group the solution with the
minimum number of cells in paging area D—1
is selected and compared. The group &’ that
gives the minimum paging cost is further
investigated. The best solution is obtained by
applying the fathoming rule in the solution
group k.

Heuristic BSG
Step 1 Sort the cells in nonincreasing order of
location probability by Lemma 2.

Step 2 : Generate solutions ¥, for k=1, 2, -+,
K and nf,, <m <nf,

by Lemma 1 and 3.
Step 3 : Evaluate solutions z¥, for k=1, 2, -+,

K and m=mk .
Choose the partition with the smallest
paging cost. Let z,,, and 2, be the
corresponding partition and the paging
cost respectively. Also let k¥ be the
corresponding solution group. Let
m < nfx;m +1.

Step 4 I E{C(z5)] < ElC(a%,_,)], then
2y = ElC(X)] and z,,, =, Let
m <—m+1 and repeat this step.

Otherwise, the solution group &  is fathomed.
Stop with the best partition z,,,, and the paging
COSt Zpoyy-

The Heuristic BSC, if applied to the example
problem of Section H-B, first evaluates
), 2% -, and 2% in <Figure 2>. Since z gives
the minimum cost, solution group & =4 is se-
lected and further investigated to have the sol-

ution z}.

3.3 Heuristic with the Best Number of Cells
in Each Paging Area

The heuristic is designed based on the
Corollary 1. The number of cells n, for each
paging area i is determined such that n, <
n, < - np. The uniform paging [Wang et al,,
11] concept is employed for the number of cells
in the remaining paging area. At each step n:
with the minimum paging cost is selected

among n; that satisfy Corollary 1.

Heuristic BNC
Step 1 : Sort the cells in nonincreasing order of
location probability by Lemma 2.

Step 2 : For paging area 1, determine the num-



ber of cells n, as follows (assume

*

* . . .
Ny Mgy -+, my_, is determined):

2.1 For each n; that satisfies Corollary 1

N—ink
k=1

Let no=| =55~

i
where N— Y, n, =ny(D—i)+l.
k=1

Note that ! is the number of cells re-

maining after n, cells are evenly as-

signed to the D—i paging areas. Let

Mgy =M= = =np_=ng and np gy,
= ... =np,=n,+1. Compute the paging
cost of the partition.

2.2 Select the partition that minimizes the
paging cost and let n: be the n, with

the minimum paging cost.

4. Computational Results
and Discussion

In this section, computational experiment is
performed to examine the effectiveness of the
proposed paging algorithms. The algorithms
presented in Section III are implemented in
Matlab version 5.2.0, and run on a 700MHz Intel
Pentium II based personal computer with
256Mbyte of memory under Windows 98.

Three problem sets are generated each with
30, 50, and 100 cells. In each set ten different
problems are experimented. The cell location
probabilities are obtained by assuming the-
following geometric distribution:

N
pj=r/d 0 for 0<r<1

j=1

The above cell location probabilities may well

suggest some real world situations [5], where

user location probabilities are concentrated in a
relatively small portion of the area when r has
a low value. In each problem set nine problems
are generated each with r=0.1, 0.2, ---, and 08.
In the last problem of each set the cell location
probabilities are assumed to follow uniform
distribution.

<Table 1~3> show the computational result
of the Algorithm OCP, Heuristic BSG, Heuristic
BNC and the algorithm by [10]. Note in our ex-
periment that when the delay bound D=2, all
four procedures give the same solution in every
problem. Thus the computational results with
D=3,4 and 5 are presented.

From <Table 1> it is clear that Heuristic BSG
and BNC lead to the same solutions when D=3.
However, as the delay bound increases the
Heuristic BSG that is based on the best solution
group performs better than the Heuristic BNC
that iteratively determines the number of cells
in each paging area. When D=5, the Heuristic
BSG outperforms the BNC in seven cases out
of ten.

The algorithm by Wang shows as good per-
formance as the Heuristic BNC when D=2.
When the delay bound is increased the solution
gap from the Heuristic BNC is increased. Notice
in <Table 1> that in every problem the expected
paging cost of BSG is lower than or equal to
that of the BNC. Also, the cost of BNC is lower
than or equal to the cost of the procedure by
Wang. This seems to be mainly due to that the
Heuristic BNC Partitions the cells that satisfy
the Lemma 3 and Corollary 1 of Section II-A.

Almost same trend is found in problems with
D=5 and D=100. However, the solution gapa-
mong the procedures is increased as the delay



{Table 1> Partition of 30 cells into D paging areas

AAY 15BN AAe T

PI\’Iroblem Agoritn D=3 D=4 D=5
urmber Solution | E[C] | E[D] | Solution | EIC] | ED] Solution EIC] | ED]
Optimal | (1227) | 123 | 110 | 1220 | 112 | 111 | QL1225 | 111 | 111

) BSG (2226) | 202 | 101 | (1,222 [ 120 | 110 | (112224) | 112 | 111
BNC 222 | 202 | 101 | (12225 | 120 | 110 | 12224 | 112 | 111

Wang (2226) | 202 | 101 | 22220 | 202 | 101 | 222222 | 202 | 101

Optimal | (1227) | 162 | 121 | (1,1,226) | 132 | 124 | 11225 | 1% | 125

) BSG (2226) | 212 | 104 | (12225 | 142 | 121 | 112224 | 128 | 124
BNC (2226) | 212 | 104 | 22220 | 208 | 104 | 222222 | 208 | 14

Wang (2226) | 212 | 104 | (22224 | 208 | 14 | 222222 | 208 | 104

Optimal | (1,326) | 211 | 131 | 132 | 163 | 139 | 11324 | 149 | 14

3 BSG (232) | 233 | 100 | (12324 | 170 | 133 | (112323 | 151 | 140
BNC (2325) | 233 | 109 | 22323 | 220 | 110 | 223210 | 220 | 110

Wang (3324 | 310 | 103 | 23322 | 22 | 109 | 2233200 [ 221 | 1m0

Optimal | (2325) | 274 | 117 | (12324 | 209 | 147 | 12323 | 18 | 163

A BSG (3324) | 329 | 107 | 13323 | 231 | 143 | 1332 | 193 | 157
BNC (3324 | 329 | 107 | (23322 | 253 | 117 | (223320) | 240 | 119

Wang G324 | 329 | 107 | (33320 | 321 | 107 | (333318 | 321 | 107

Optimal | (2424 | 338 | 127 | (12423 | 268 | 163 | (11242 | 234 | 18

. BSG (3423) | 368 | 113 | (23421 | 292 | 128 | (1234200 | 246 | 164
BNC (B423) | 368 | 113 | (33420 | 346 | 114 | (233418 | 28 | 129

Wang (4422) | 434 | 107 | (34419 | 354 | 113 | (3344160 | 34 | 114

Optimal | (2523) | 444 | 139 | (22521) | 358 | 150 | (1225200 | 314 | 220

6 BSG @521) | 48 | 114 | (24519) | 374 | 141 | 124518 | 324 | 1%
BNC (4521) | 48 | 114 | (34518 | 4 | 15 | (333417 | 38 | 127

Wang (4521) | 48 | 114 | (44517 | 462 | 114 | (344415 | 400 | 125

Optimal | (3621 | 590 | 138 | (23619) | 48 | 168 | (223617 | 436 | 259

. BSG 6619) | 638 | 119 | 34617 | 503 | 143 | (234516 | 445 | 171
BNC G619 | 638 | 119 | 44517) | 541 | 131 | (344514) | 485 | 145

Wang 6619 | 638 | 119 | 45516) | 551 | 129 | 445512 | 514 | 131

Optimal | (4719) | 847 | 149 | (34716) | 719 | 176 | (234615 | 653 | 306

g BSG (6718) | 850 | 139 | (45615 | 735 | 158 | (234615 | 653 | 213
BNC (5718) | 850 | 139 | (45615 | 735 | 158 | (344613 | 667 | 183

Wang 6717 | 874 | 132 | G6613) | 75 | 143 | @55511) | 707 | 160

Optimal | (6915) | 1316 | 168 | (46812) | 1175 | 207 | (345711 | 109 | 366

9 BSG (7914) | 1319 | 160 | (56811 | 1177 | 1% | 4457100 | 1096 | 235
BNC (79149 | 1319 | 160 | (56811 | 1177 | 195 | 445710 | 1096 | 235

Wang (8814) | 1331 | 15 | (67,710 | 119 | 181 66667 | 1125 | 203

Optimal | (89,13) | 1507 | 170 | (66810) | 1358 | 208 | (4556100 | 1277 | 397

10 BSG 9912) | 1511 | 163 | (56811 | 1360 | 220 (55569 | 1278 | 245
BNC 9912) | 1511 | 163 | (56811 | 1360 | 220 (55569 | 1278 | 245

Wang 9912) | 1511 | 163 | (77610 | 1368 | 1% 65658 | 1290 | 22




(Table 2> Partition of 50 cells into D paging areas

Problem | oo D=3 D=4 D=5
Number Solution | EIC] | EID] | Soltion | EIC] | EID] | Solution | EIC) | EID]
Optimal | (124D | 125 | 110 | (1246 | 112 | L1 | (L1245 | L1l | 111

. BSG ©2246) | 202 | 101 | (12245 | 120 | 110 | 12240 | 112 | 111
BNC 2246) | 202 | 101 | 22240 | 202 | 101 | 22224 | 202 | 100

Wang | (2246) | 202 | 101 | 2248 | 202 | 101 | (222242 | 202 | 101

Optimal | (1346) | 167 | 120 | (L1345 | 133 | 124 | (11344 | 127 | 15

) BSG 23465 | 213 | 104 | 12340 | 143 | 121 | (112343 | 129 | 14
BNC 2345 | 213 | 104 | 22383 | 209 | 104 | (22234D) | 208 | 104

Wang | (3344 | 303 | 100 | (23342 | 212 | 104 | (223340) | 285 | 104

Optimal | (1,346) | 227 | 131 | (11345) | 168 | 139 | (L11344) | 150 | 142

5 BSG 3344 | 311 | 103 | (13343 | 193 | 131 | (113342) | 188 | 139
BNC 3340 | 311 | 103 | (3334D) | 308 | 102 | (223340) | 221 | 110

Wang | (3344) | 311 | 103 | (3334D) | 308 | 102 | (33333 | 308 | 103

Optimal | (2444) | 2& | 116 | (12443) | 213 | 147 | (112442 | 1.8 | 163

) BSG 3483 | 33 | 107 | @344) | 283 | 117 | (123440) | 201 | 147
BNC 3a43) | 333 | 107 | (33440 | 321 | 107 | 333437 | 321 | 107

Wang | 4442 | 413 | 103 | (G4439) | 326 | 107 | 33443%) | 321 | 107

Optimal | (2543 | 359 | 126 | (12542 | 279 | 163 | (112541 | 239 | 188

- BSG @541) | 439 | 106 | (24539 | 310 | 127 | (12453%) | 25 | 163
BNC 4541) | 430 | 106 | (3453 | 35 | 113 | (3345%) | 344 | 114

Wang | (4541) | 439 | 106 | (44537 | 427 | 107 | (444533) | 427 | 107

Optimal | (364D | 471 | 123 | (23639 | 369 | 144 | (123630 | 321 | 219

] BSG (5639 | 561 | 108 | (25630 | 402 | 139 | (22563%) | 344 | 150
BNC (5639) | 561 | 108 | 45635 | 472 | 114 | (344633) | 400 | 15

Wang | 5639 | 561 | 108 | (5634 | 543 | 108 | (455630 | 470 | L14

Ootimal | 4838 | 645 | 125 | (24730 | 514 | 162 | 22473) | 451 | 2%

; BSG 6730 | 718 | 113 | 36738 | 5465 | 139 | 236732 | 467 | 188
BNC 6730 | 718 | 113 | 66732 | 620 | 119 | (456728 | 549 | 1.29

Wang | (7736) | 782 | 109 | 66730 | 684 | 113 | 566726 | 615 | 119

Optimal | (1015) | 951 | 136 | (35933) | 781 | 170 | (335930 | 697 | 302

. BSG | (11033 | 984 | 123 | 47930 | 79 | 151 | (346928) | 700 | 178
BNC | (71033 | 98 | 128 | 6792 | 854 | 132 | (4569%) | 729 | 158

Wang | 8933 | 1025 | 119 | (789260 | 912 | 125 | 678820 | 838 | 133

Optimal | (81329) | 1660 | 153 | (681224) | 1436 | 181 | (4671122 | 1317 | 362

. BSG | 91329 | 1660 | 148 | (691223) | 1440 | 178 | (56811200 | 1320 | 207
BNC | O1328) | 1660 | 148 | (781223 | 1445 | 173 | (1881017 | 1370 | 179

Wang | (1L1326) | 1698 | 139 | 9.101120) | 1503 | 1% | (8899,16) | 1402 | 170

Optimal | (131423 | 2482 | 172 | O101318) | 2240 | 214 | 889,10,15) | 2102 | 406

" BSG | (131423) | 2482 | 172 | 9101318 | 2240 | 214 | 889,1015) | 2102 | 245
BNC | (131423) | 2482 | 172 | (10111217) | 2244 | 206 | 889,10,15) | 21.02 | 245

Wang | (151421) | 24% | 163 | (AL121116) | 2257 | 197 | (1099913 | 2126 | 2.2
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{Table 3> Partition of 100 cells into D paging areas

Problem ) D=3 D=4 D=5

Number | 8T [~ T RIC) | B | Solton | EICI | ED] | Soltion | EIC | EIDI
Optimal | (1297 | 130 | 101 | (L129%) | 113 | L1l | (112%) | L1 | L1l

. BSG | 229 | 203 | 101 | (122%) | 120 | 110 | (Ll2280 | 112 | L1l
BNC | (229 | 203 | 101 | (22294 | 202 | 101 | (22229 | 202 | 101

Wang | 229 | 203 | L0l | (22294 | 202 | 101 | (22229 | 202 | 101
Optimal | (3% | 17 | 120 | (L13%) | 1% | 124 | (L1384 | 127 | 15

) BSG | (3394 | 303 | 100 | (1339%) | 161 | 120 | (1133%) | 132 | 124
BNC | (394 | 303 | 100 | (33391) | 302 | 100 | (233389 | 212 | 104

Wang | (33941 | 303 | 100 | (33390 | 302 | 100 | (333389 | 302 | 100
Optimal | (2494 | 243 | 109 | (124%) | 1713 | 18 | (LL14%) | 152 | 142

; BSG | (3493 | 313 | 103 | (13492 | 194 | 131 | (,1349) | 158 | 139
BNC | (3493 | 313 | 103 | (33490) | 308 | 103 | (333480 | 308 | 103

Wang | 44921 | 404 | 100 | (34489 | 311 | 103 | (GA4485) | 311 | 103
Optimal | (259 | 2% | 116 | (1259 | 218 | 146 | (112590 | 187 | 163

] BSG | (45910 | 415 | 103 | (24589) | 266 | 116 | (12458 | 207 | 147
BNC | (45910 | 415 | 1038 | 44587 | 411 | 103 | (344589 | 326 | 107

Wang | (45910 | 415 | 103 | (4558 | 413 | 103 | 44558) | 411 | 103
Optimal | (26920 | 38 | 125 | (12691) | 293 | 163 | (L126%0) | 246 | 188

- BSG | (5689 | 52 | 103 | 25687 | 331 | 126 | (125686 | 266 | 163
BNC | 5689 | 523 | 103 | (5688 | 516 | 103 | (445680 | 427 | 107

Wang | 5689 | 623 | 103 | 56683 | 519 | 103 | 5667 | 516 | 103
Optimal | (38897 | 506 | 122 | (3880 | 3& | 144 | (123780 | 32 | 218

] BSG | 6787 | 644 | 106 | (36784 | 439 | 123 | (23678 | 35 | 144
BNC | 6787 | 644 | 106 | (6782 | 550 | 108 | 556770 | 543 | 108

Wang | (7786 | 726 | 103 | 67780 | 634 | 106 | 667774 | 630 | 106
Optimal | (41086) | 698 | 125 | (34108 | 539 | 143 | (2341080 | 464 | 25%

, BSG | (8108) | 871 | 106 | 48979 | 609 | 125 | (248970 | 4% | 16l
BNC | 8108 | 871 | 106 | (78976 | 772 | 109 | (678970 | 691 | 113

Wang | 908D | 950 | 104 | 89974 | 855 | 106 | (789967 | 770 | 109
Optimal | (6,1381) | 1058 | 128 | 461370 | 831 | 152 | (G461374) | 724 | 299

. BSG | AL1370) | 1248 | 109 | (5101372 | 887 | 136 | (45101368) | 763 | 156
BNC | (11,1376 | 1248 | 109 | (9101368) | 1058 | 115 | (78101263 | 909 | 1%

Wang | (21375 | 1317 | 107 | Q0111267 | 1133 | 112 | 910111259 | 1052 | 115
Optimal | (1L,2069) | 1091 | 135 | (711,1963) | 1639 | 165 | (5.7,10,1959) | 1461 | 353

. BSG | 152065 | 2074 | 123 | (9141958) | 1680 | 149 | (69,141853) | 1489 | 179
BNC | (152065 | 2074 | 123 | ULI41857) | 17.30 | 140 | O11,131750) | 1562 | 154

Wang | (17,1960 | 2161 | 119 | (15161850) | 1927 | 125 | (314151642) | 1771 | 133
Optimal | (Z73140) | 5237 | 175 | Q0222533 | 4755 | 214 | (1516,182229) | 4478 | 422

0 BSG | 213140 | 5237 | 175 | (0212534 | 475 | 216 | (1517,1921.28) | 4480 | 258
BNC | (273149 | 6237 | 175 | 2021.5534) | 4755 | 216 | (17.181820,27) | 4487 | 248

Wang | (303040) | 5249 | 169 | (4232330) | 4779 | 200 | (1919,19,1924) | 4509 | 2.3
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(Table 4) Gap from the Paging Cost by Algorithm OPA

# of D=3 D=4 D5
Cells | % [Tpsg BNC | Wang | BSG BNC | Wang | BSG BNC | Wang
Min 0.002 0.002 0.003 0.001 0.001 0.007 0.000. 0.000 0.010
N=30 | Max 0.642 0642 0.642 0106 0576 0.804 0.055 0.651 0.820
Avg 0.153 0.153 0213 0.049 0.177 0.316 0.020 0.203 0.3%
Min 0.000 0.000 0.005 0.000 0.002 0.008 0.000 0.000 0.011
N=50 | Max 0616 0.616 0814 0.188 0.833 0.833 0086 0.820 1.244
Avg 0.200 0.200 0.300 0.077 0.357 0432 0.035 0.366 057
Min 0.000 0.000 0.002 0.000 0.000 0.005 0.000 0.002 0.007
N=100 | Max 0.731 0.731 0.731 0.220 1.237 1.237 0.107 1.026 1.378
Avg 0.309 0.309 ‘ 0.385 0.110 0.565 0628 0.051 0.546 0.779
bound and the number of cells increased. More N
specifically, the gap between the Heuristic BSG :
and the Algorithm OCP is reduced as the delay :-7 — 1
bound is increased. The BSG well converges to o: B
the optimal solution as the problem size is o4 o [
increased. However, the gap between the proce- :: [ |
dure by Wang and the Algorithm OCP is in- °'; | ]

creased as the delay bound increases.

<Table 4> shows the performance of each
procedure compared to the optimal solution by
Algorithm OCP. As shown in the table when
D=5 the average gap of the proposed Heuristic
BSG from the optimal solution is 2~5% while
those of the method by Wang is 38~78% de-
pending on the number of cells. Clearly, the pro-
posed two heuristics outperform the algorithm
by Wang et al. The gain by the heuristic BSG
compared to the algorithm by Wang is 6~69%
in problems with D=100. The average gaps by
the three procedures are compared as in <Figure
3>. It shows that the proposed BSG performs
better than two other procedures as the delay

bound increases.

{Figure 3) Gap from the optimal solution with
N=100

5. Conclusion

The sequential paging problem with delay
bound is investigated by examining the neces-
sary conditions for the optimal cell partitioning.
In addition to the well-known condition of non-
increasing order of cell probabilities, the con-
dition of nondecreasing order of number of cells
is developed. The optimal cell partitioning OCP
and two heuristics BSG and BNC are proposed
based on the necessary conditions and the fath-
oming rule that efficiently cuts out unnecessary
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solution space and expedites the search process.

The performance of the proposed sequential
algorithms are experimented and compared with
existing algorithm. Computational results show
that the proposed Heuristic 3SG well converges
to the optimal solutions even if the problem size
increases. However, the Heuristic BNC and the
best-known existing algorithm tend to diverge
from the optimal solution as the number of cells
and the delay bound increase. The solution gap
of the Heuristic BSG from -he optimal solution
records 2~5% while that of the best-known ex-
isting algorithm records 38~-78% when the de-
lay bound is five.
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