• 제목/요약/키워드: Sequencing batch biofilm reactor (SBBR)

검색결과 11건 처리시간 0.017초

연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구 (A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor)

  • 박민정;김동석
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

연속회분식 생물막 반응기를 이용한 폐수중의 질소.인 제거 (Nitrogen and Phosphorous Removal from Wastewater by SBBR(Sequencing Batch Biofilm Reactor) System)

  • 김조웅;이정복;최대건;임윤택;김두현;황재웅;이용희;반용병
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.638-643
    • /
    • 1998
  • An investigation was made to develop new biofilm medium which could be applied to the Sequencing Batch Biofilm Reactor(SBBR) system for enhanced nutrient removal. 21 kinds of polyurethane media were tested fro adhesion ability for nitrifying bacteria. Nitrification rates were also tested by introducing synthetic wastewater containing ammonium-nitrogen to reactors with biofilm media. It was found that Z96-06 medium had higher selective adhension ability for nitrifying bacteria than the other biofilm media. The nitrification rate was 2.21 mg {{{{ { NH}`_{4 } ^{ +} }}}}-N /L$.$h$.$g MLSS when we operated the SBBR system containing Z96-06. Nitrification rate of the SBBR system increased approximately by 30% compared with that of the Sequencing Batch Reactor(SBR) system which did not contain biological carrier.

  • PDF

연속 회분식 반응기와 연속 회분식 생물막 반응기의 유기물, 질소 및 인의 동시 제거에 관한 비교 연구 (A Comparison Study on the Simultaneous Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Reactor and Sequencing Batch Biofilm Reactor)

  • 박영식;김동석
    • 한국환경보건학회지
    • /
    • 제31권2호
    • /
    • pp.152-159
    • /
    • 2005
  • Laboratory scale experiments were conducted to study the applicability, and to compare the performance of two types of sequencing batch reactor (SBR)systems, a conventional SBR and sequencing batch biofilm reactor (SBBR) on the biological nitrogen and phosphorus removal. The nitrification rate in SaR was higher than that in SBBR both in high influent TOC concentration. The denitrification was completed at the first non-aeration period in SBR, however, the additional non-aeration period should be installed or the first aeration period should be extended more in order to complete the nitrogen removal in SBBR. The time at the first aeration period was more needed as about 4-5 h in order to uptake all the released $PO_4^{3-}\;-P$ at the first non-aeration period. SBBR needed more operation time, especially the first aeration time, than SBR at the high influent TOC concentration in order to complete nitrogen and phosphorus removal.

소규모 오수처리를 위한 $A_{2}O$ SBR과 $A_{2}O$ SBBR에서 유입 유기물 농도변화에 따른 염양염류 제거 특성 비교 (A Comparison of Nutrients Removal Characteristics by the Variation of Organics in $A_{2}O$ SBR and $A_{2}O$ SBBR for the Small Sewerage System)

  • 박영식;정노성;김동석
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.451-461
    • /
    • 2006
  • Laboratory scale experiments were conducted to study the conversion of sludge from conventional activated sludge to nitrogen-phosphorus removal sludge using two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). The nitrogen and phosphorus removal characteristics were similar between SBR and SBBR and the removal efficiencies were very low when the influent TOC concentrations were low. The nitrogen and phosphorus removal efficiencies in SBR were 96% and 77.5%, respectively, which were higher than those in SBBR (88% and 42.5%) at the high influent TOC concentration. In SBBR, the simultaneous nitrification-denitrification was occurred because of the biofilm process. The variations of pH, DO concentration and ORP were changed as the variation of influent TOC concentration both in SBR and SBBR and their periodical characteristics were cleary shown at the high influent TOC concentration. Especially, the pH, DO concentration and ORP inflections, were cleary occurred in SBR compared with SBBR.

(AO)2 SBBR과 A2O SBBR에서 영양염류 제거 특성 비교 (A Comparison of Nutrient Removal Characteristics between (AO)2 SBBR and A2O SBBR)

  • 박영식;김동석
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.444-450
    • /
    • 2006
  • This study was carried out to compare the performance of two types of sequencing batch biofilm reactors (SBBRs), anoxic-oxic-anoxic-oxic $(AO)_2$ SBBR and anoxic-oxic-anoxic $A_2O$ SBBR, on the biological nutrient removal. The TOC removal efficiency in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. At the 1st non-aeration period, the release of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR because of the high TOC removal. At the 1st aeration-period, the nitrification was not completed in $(AO)_2$ SBBR, however, it was completed in $A_2O$ SBBR and the nitrification rate in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. The release and uptake of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was much higher than in $(AO)_2$ SBBR. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBBRs. The break point in DO and pH curves at the aeration period coincided with the end of nitrification.

외부탄소원을 사용한 SBBR의 공정 특성 및 질소제거 (Evaluation of SBBR Process Performance Focused on Nitrogen Removal with External Carbon Addition)

  • 한혜정;윤주환
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.566-571
    • /
    • 2006
  • A sequencing batch biofilm reactor (SBBR) operated with a cycle of anaerobic - aerobic - anoxic - aerobic has been evaluated for the nutrient removal characteristics. The sponge-like moving media was filled to about 10% of reactor volume. The sewage was the major substrate while external synthetic carbon substrate was added to the anoxic stage to enhance the nitrogen removal. The operational results indicated that maximum T-N and T-P removal efficiencies were 97% and 94%, respectively were achieved, while COD removal of 92%. The observations of significant nitrogen removal in the first aerobic stage indicated that nitrogen removal behaviour in this SBBR was different to conventional SBR. Although the reasons for aerobic nitrogen removal has speculated to either simultaneous nitrification and denitrification or anoxic denitrification inside of the media, further researches are required to confirm the observation. The specific oxygen uptake rate (SOUR) test with biofilm and suspended growth sludge indicated that biofilm in SBBR played a major role to remove substrates.

Denitrifying PAO와 SBBR-MSBR을 이용한 생물학적영양소제거공정에서 탄소원 절약에 대한 연구 (Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System)

  • 이한샘;한종훈;윤주환
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.646-653
    • /
    • 2011
  • The combined system of sequencing batch biofilm reactor (SBBR) and membrane SBR (MSBR) was operated with sewage to evaluate the COD utilization for biological nutrient removal (BNR). The SBBR was operated for nitrification reactor, while denitrifying PAO (dPAO) was cultivated in MSBR with anaerobic-anoxic operation. In the SBBR and MSBR system, the enhanced biological phosphorus removal (EBPR) was successfully achieved with higher N removal. The COD utilization in combined SBBR-MSBR system was significantly reduced compared to ordinary BNR (up to 3.1 g SCOD/g (N+P) and 1.6 g SCOD/g (N+P) with different C/N/P ratio). The results suggest that a dPAO process could effectively reduce carbon energy (=COD) requirement. The combination of oxic-SBBR and anaerobic-anoxic MSBR for dPAO utilization could be an attractive alternative to upgrade the process performance in weak sewage.

SBR과 SBBR에서 유입 인 농도 감소에 따른 인과 질소의 제거 특성 변화 (Variation of Phosphorus and Nitrogen Removal Characteristics According to the Decrease of Influent Phosphorus Concentration in SBR and SBBR)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제19권4호
    • /
    • pp.483-490
    • /
    • 2010
  • The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1 st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.

연속회분식 생물막 반응기에서 여재 충진율의 영향 (Effect of Media Packing Ratio on the Sequencing Batch Biofilm Reator)

  • 김동석;박민정
    • 한국환경과학회지
    • /
    • 제12권7호
    • /
    • pp.791-799
    • /
    • 2003
  • This study was carried out to get more operational characteristics of the sequencing batch biofilm reactors with media volume/reactor volume ratio of 15 %, 25 % and 35 %. Experiments were conducted to find the effects of the media packing ratio on organic matters and nutrients removal. Three laboratory scale reactors were fed with synthetic wastewater. During studies, the operation mode was fixed. The organic removal efficiency didn't show large difference among three reactor of different packing media ratios. However, from the study results, the optimum packing media ratios for biological nutrient removal was shown as 25%. The denitrifying PAOs could take up and store phosphate using nitrate as electron acceptor.

A2O SBBR에서 비포기 시간 배분에 따른 질소-인 제거 특성 비교 (A Comparison of N and P Removal Characteristics by the Variation of Non-aeration Time in A2O SBBR)

  • 박영식;정노성;김동석
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.813-821
    • /
    • 2007
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.