• Title/Summary/Keyword: Sequence optimization

Search Result 390, Processing Time 0.034 seconds

Channel Assignment Sequence Optimization under Fixed Channel Assignment Scheme (채널 고정 할당 방식에서 채널 할당 순서 최적화(응용 부문))

  • Han, Jung-Hee;Lee, Young-Ho;Kim, Seong-In;Kim, Yong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.288-300
    • /
    • 2006
  • In this paper, we consider a channel ordering problem that seeks to minimize the total interference in mobile radio networks. If a base station receives connection request from a mobile user, one of the empty channels that are fixed to the base station is assigned to the mobile user. Among several channels available, we can choose one that seems to make least interference with other channels assigned to adjacent base stations. However, a pair of channels that are not separated enough do not generate interference if both of them are not simultaneously used by mobile users. That is, interference between channels may vary depending on the channel assignment sequence for each base station and on the distribution of mobile users. To find a channel assignment sequence that seems to generate minimum interference, we develop an optimization model considering various scenarios of mobile user distribution. Simulation results show that channel assignment sequence determined by the scenario based optimization model significantly reduces the interference provided that scenarios and interference costs are properly generated.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

A Study on the Optimization of Drilling Operations(II): Optimum Drilling Sequence Selection for Producing a Hole (드릴가공 최적화에 대한 연구(2): 구멍가공시 최적의 드릴가공 순서 결정)

  • Rou, Hoi-Jin
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.346-353
    • /
    • 1999
  • In this paper, the optimum drilling operation sequence which results into the minimum overall machining time required to produce a (multi-diameter) hole is identified. The operation sequence is defined as the set of ordered operations used for producing a (multi-diameter) hole. The overall machining time is derived by summing the minimum machining times of each operation assigned to a sequence. The operations represent the drilling actions of certain sizes to produce the related holes. The minimum machining time of each operation is obtained by solving the optimization problem. Finally, this paper will identify the effects of machining constraints on the overall machining times and their relationships to sequence selection.

  • PDF

PCB Assembly Optimization of Chip Mounters for Multiple Feeder Assignment (다중피더배치를 고려한 칩마운터의 조립순서 최적화)

  • Kim Kyung-Min;Park Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.144-151
    • /
    • 2005
  • We propose an optimization method to reduce the assembly time of chip mounters. Feeder arrangement and assembly sequence are determined considering the multiple feeder assignment. The problem is divided into two sub-problems: feeder arrangement problem and assembly sequence problem. We present mathematical model for each sub-problem. The clustering algorithm and assignment algorithm are applied to solve the feeder arrangement problem. The assignment algorithm and connection algorithm are applied to solve the assembly sequence problem. Simulation results are then presented to verity the usefulness of the proposed method.

Individual and Global Optimization of Switched Flux Permanent Magnet Motors

  • Zhu, Z.Q.;Liu, X.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • With the aid of genetic algorithm (GA), global optimization with multiple geometry parameters is feasible in the design of switched flux permanent magnet (SFPM) machines. To investigate the advantages of global optimization over individual optimization, which has been used extensively for the design of SFPM machines, a comparison between the two approaches is carried out for the case of fixed copper loss and volume. In the case of individual parameter optimization, the sequence in which the individual parameters are optimized is very important. In the global optimization a better design can always be achieved although the corresponding torque density is found to be only slightly better than that of individually optimized with correct design sequence. By using the obtained global optimization results, the performance in machines having two types of stator and rotor pole combinations, i.e. 12/10 and 12/14, are compared, and it is shown that higher torque is exhibited in the 12/14 SFPM machine. Finally, this paper also demonstrates that global optimization, with the restriction of equal pole width, magnet thickness and slot opening, can maximize the torque density without significantly sacrificing other performance, such as cogging torque and overload capability.

Optimum Disassembly Sequence Generation of Parts for Recycling (부품의 리사이클링을 위한 최적 해체경로 생성)

  • Lee, Kun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 2006
  • This paper represents a study on disassembly sequence generation system for automobile parts. This system is practically very useful because proper disassembly sequence of end-of-life product becomes crucial as take-back obligations are imposed for environmental reasons. Therefore a disassembly sequence generation system is suggested to automatically derive all the feasible disassembly sequences from the assembly modeling files. As a result, in consideration of the all parts and subassemblies the optimum disassembly sequence is generated. And the optimum disassembly sequence for a certain part or subassembly can be also suggested.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms (유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계)

  • Yoon, I.S.;Choi, H.S.;Kim, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

The Correlation Parameters and the Optimization of a PN Sequence Phase for Variable Spreading Gain (VSG) Multi-Rate DS/CDMA System (멀티레이트 서비스를 지원하는 VSG-DS/C음 시스템에서의 PN 시퀀스 상관 파라미터 특성과 최적화)

  • 이연우;김응배;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.10-17
    • /
    • 2000
  • In this paper, we evaluate the correlation properties and the optimization of PN sequence phase for multi-media DS/CDMA system with variable spreading gain (VSG) scheme. In multi-media multi-rate DS/CDMA systems, the optimization of PN sequence phase is not a tractable problem, since the sequences should be optimized against both sequences of the same length and other sequences with different length. Hence, we verify the correlation properties of PN sequence phase in multi-rate system environment and furthermore, we propose the new phase criterion, MIN-AIP (minimum-average interference parameter), to minimize the bit error rate (BER). As the results of performance evaluations, it is shown that the performance of MIN-AIP criteria gives the best results.

  • PDF